注意
点击此处下载完整示例代码
使用 Tacotron2 进行文本转语音¶
概述¶
本教程演示了如何使用 torchaudio 中预训练的 Tacotron2 构建文本转语音管道。
文本转语音管道的流程如下:
文本预处理
首先,输入文本被编码成符号列表。在本教程中,我们将使用英文字符和音素作为符号。
频谱图生成
从编码的文本中,生成频谱图。我们使用
Tacotron2
模型来完成此操作。时域转换
最后一步是将频谱图转换为波形。从频谱图生成语音的过程也称为声码器。在本教程中,使用了三种不同的声码器:
WaveRNN
、GriffinLim
和 Nvidia 的 WaveGlow。
下图说明了整个过程。

所有相关组件都捆绑在torchaudio.pipelines.Tacotron2TTSBundle
中,但本教程还将涵盖其内部过程。
准备¶
首先,我们安装必要的依赖项。除了torchaudio
,还需要DeepPhonemizer
来执行基于音素的编码。
%%bash
pip3 install deep_phonemizer
import torch
import torchaudio
torch.random.manual_seed(0)
device = "cuda" if torch.cuda.is_available() else "cpu"
print(torch.__version__)
print(torchaudio.__version__)
print(device)
2.8.0+cu126
2.8.0
cuda
import IPython
import matplotlib.pyplot as plt
文本处理¶
基于字符的编码¶
本节将介绍基于字符的编码是如何工作的。
由于预训练的 Tacotron2 模型需要特定的符号表,因此torchaudio
中提供了相同的功能。但是,我们首先将手动实现编码以帮助理解。
首先,我们定义符号集'_-\'(),.:;? abcdefghijklmnopqrstuvwxyz'
。然后,我们将输入文本的每个字符映射到符号表中相应符号的索引。不在表中的符号将被忽略。
[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 11, 31, 16, 35, 31, 11, 31, 26, 11, 30, 27, 16, 16, 14, 19, 2]
如上所述,符号表和索引必须与预训练的 Tacotron2 模型所期望的一致。torchaudio
提供了与预训练模型相同的转换功能。您可以按如下方式实例化并使用此类转换。
tensor([[19, 16, 23, 23, 26, 11, 34, 26, 29, 23, 15, 2, 11, 31, 16, 35, 31, 11,
31, 26, 11, 30, 27, 16, 16, 14, 19, 2]])
tensor([28], dtype=torch.int32)
注意:我们的手动编码和torchaudio
text_processor
的输出是匹配的(这意味着我们正确地重新实现了库内部的功能)。它接受文本或文本列表作为输入。当提供文本列表时,返回的lengths
变量表示输出批次中每个已处理标记的有效长度。
中间表示可以按如下方式检索
['h', 'e', 'l', 'l', 'o', ' ', 'w', 'o', 'r', 'l', 'd', '!', ' ', 't', 'e', 'x', 't', ' ', 't', 'o', ' ', 's', 'p', 'e', 'e', 'c', 'h', '!']
基于音素的编码¶
基于音素的编码类似于基于字符的编码,但它使用基于音素的符号表和 G2P(字母到音素)模型。
G2P 模型的细节超出了本教程的范围,我们只看转换是什么样子。
与基于字符的编码的情况类似,编码过程应该与预训练的 Tacotron2 模型所训练的内容相匹配。torchaudio
有一个用于创建该过程的接口。
以下代码演示了如何创建和使用该过程。在幕后,使用DeepPhonemizer
包创建了一个 G2P 模型,并获取了DeepPhonemizer
作者发布的预训练权重。
0%| | 0.00/63.6M [00:00<?, ?B/s]
0%| | 128k/63.6M [00:00<02:17, 485kB/s]
1%| | 640k/63.6M [00:00<00:39, 1.67MB/s]
4%|3 | 2.25M/63.6M [00:00<00:13, 4.87MB/s]
11%|#1 | 7.25M/63.6M [00:00<00:04, 13.8MB/s]
20%|## | 13.0M/63.6M [00:00<00:02, 20.6MB/s]
25%|##4 | 15.8M/63.6M [00:01<00:02, 22.4MB/s]
30%|### | 19.2M/63.6M [00:01<00:02, 21.7MB/s]
39%|###8 | 24.8M/63.6M [00:01<00:01, 25.2MB/s]
48%|####7 | 30.2M/63.6M [00:01<00:01, 27.4MB/s]
57%|#####6 | 36.0M/63.6M [00:01<00:00, 29.3MB/s]
62%|######2 | 39.5M/63.6M [00:01<00:00, 26.4MB/s]
69%|######9 | 44.1M/63.6M [00:02<00:00, 26.5MB/s]
78%|#######7 | 49.6M/63.6M [00:02<00:00, 28.2MB/s]
87%|########6 | 55.2M/63.6M [00:02<00:00, 29.6MB/s]
96%|#########5| 60.9M/63.6M [00:02<00:00, 32.6MB/s]
100%|##########| 63.6M/63.6M [00:02<00:00, 24.5MB/s]
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:392: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
warnings.warn(
tensor([[54, 20, 65, 69, 11, 92, 44, 65, 38, 2, 11, 81, 40, 64, 79, 81, 11, 81,
20, 11, 79, 77, 59, 37, 2]])
tensor([25], dtype=torch.int32)
请注意,编码值与基于字符的编码示例不同。
中间表示如下所示。
['HH', 'AH', 'L', 'OW', ' ', 'W', 'ER', 'L', 'D', '!', ' ', 'T', 'EH', 'K', 'S', 'T', ' ', 'T', 'AH', ' ', 'S', 'P', 'IY', 'CH', '!']
频谱图生成¶
Tacotron2
是我们用于从编码文本生成频谱图的模型。有关模型的详细信息,请参阅该论文。
使用预训练权重实例化 Tacotron2 模型很容易,但是请注意,Tacotron2 模型的输入需要通过匹配的文本处理器进行处理。
torchaudio.pipelines.Tacotron2TTSBundle
将匹配的模型和处理器捆绑在一起,从而轻松创建管道。
有关可用捆绑包及其用法,请参阅Tacotron2TTSBundle
。
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, _, _ = tacotron2.infer(processed, lengths)
_ = plt.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")

/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:392: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
warnings.warn(
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_wavernn_ljspeech.pth
0%| | 0.00/107M [00:00<?, ?B/s]
20%|#9 | 21.1M/107M [00:00<00:00, 221MB/s]
40%|#### | 43.4M/107M [00:00<00:00, 228MB/s]
70%|######9 | 74.8M/107M [00:00<00:00, 274MB/s]
94%|#########3| 101M/107M [00:00<00:00, 259MB/s]
100%|##########| 107M/107M [00:00<00:00, 252MB/s]
请注意,Tacotron2.infer
方法执行多项式采样,因此生成频谱图的过程会产生随机性。
def plot():
fig, ax = plt.subplots(3, 1)
for i in range(3):
with torch.inference_mode():
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
print(spec[0].shape)
ax[i].imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")
plot()

torch.Size([80, 190])
torch.Size([80, 184])
torch.Size([80, 185])
波形生成¶
一旦生成了频谱图,最后一个过程就是使用声码器从频谱图中恢复波形。
torchaudio
提供了基于GriffinLim
和WaveRNN
的声码器。
WaveRNN 声码器¶
从上一节继续,我们可以从同一个捆绑包中实例化匹配的 WaveRNN 模型。
bundle = torchaudio.pipelines.TACOTRON2_WAVERNN_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)
text = "Hello world! Text to speech!"
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:392: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
warnings.warn(
Downloading: "https://download.pytorch.org/torchaudio/models/wavernn_10k_epochs_8bits_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/wavernn_10k_epochs_8bits_ljspeech.pth
0%| | 0.00/16.7M [00:00<?, ?B/s]
100%|##########| 16.7M/16.7M [00:00<00:00, 326MB/s]
def plot(waveforms, spec, sample_rate):
waveforms = waveforms.cpu().detach()
fig, [ax1, ax2] = plt.subplots(2, 1)
ax1.plot(waveforms[0])
ax1.set_xlim(0, waveforms.size(-1))
ax1.grid(True)
ax2.imshow(spec[0].cpu().detach(), origin="lower", aspect="auto")
return IPython.display.Audio(waveforms[0:1], rate=sample_rate)
plot(waveforms, spec, vocoder.sample_rate)

Griffin-Lim 声码器¶
使用 Griffin-Lim 声码器与 WaveRNN 相同。您可以使用get_vocoder()
方法实例化声码器对象并传入频谱图。
bundle = torchaudio.pipelines.TACOTRON2_GRIFFINLIM_PHONE_LJSPEECH
processor = bundle.get_text_processor()
tacotron2 = bundle.get_tacotron2().to(device)
vocoder = bundle.get_vocoder().to(device)
with torch.inference_mode():
processed, lengths = processor(text)
processed = processed.to(device)
lengths = lengths.to(device)
spec, spec_lengths, _ = tacotron2.infer(processed, lengths)
waveforms, lengths = vocoder(spec, spec_lengths)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/modules/transformer.py:392: UserWarning: enable_nested_tensor is True, but self.use_nested_tensor is False because encoder_layer.self_attn.batch_first was not True(use batch_first for better inference performance)
warnings.warn(
Downloading: "https://download.pytorch.org/torchaudio/models/tacotron2_english_phonemes_1500_epochs_ljspeech.pth" to /root/.cache/torch/hub/checkpoints/tacotron2_english_phonemes_1500_epochs_ljspeech.pth
0%| | 0.00/107M [00:00<?, ?B/s]
33%|###3 | 35.8M/107M [00:00<00:00, 375MB/s]
67%|######6 | 71.5M/107M [00:00<00:00, 361MB/s]
100%|##########| 107M/107M [00:00<00:00, 370MB/s]

Waveglow 声码器¶
Waveglow 是 Nvidia 发布的一种声码器。预训练权重已在 Torch Hub 上发布。可以使用torch.hub
模块实例化该模型。
# Workaround to load model mapped on GPU
# https://stackoverflow.com/a/61840832
waveglow = torch.hub.load(
"NVIDIA/DeepLearningExamples:torchhub",
"nvidia_waveglow",
model_math="fp32",
pretrained=False,
)
checkpoint = torch.hub.load_state_dict_from_url(
"https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth", # noqa: E501
progress=False,
map_location=device,
)
state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()}
waveglow.load_state_dict(state_dict)
waveglow = waveglow.remove_weightnorm(waveglow)
waveglow = waveglow.to(device)
waveglow.eval()
with torch.no_grad():
waveforms = waveglow.infer(spec)
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/hub.py:330: UserWarning: You are about to download and run code from an untrusted repository. In a future release, this won't be allowed. To add the repository to your trusted list, change the command to {calling_fn}(..., trust_repo=False) and a command prompt will appear asking for an explicit confirmation of trust, or load(..., trust_repo=True), which will assume that the prompt is to be answered with 'yes'. You can also use load(..., trust_repo='check') which will only prompt for confirmation if the repo is not already trusted. This will eventually be the default behaviour
warnings.warn(
Downloading: "https://github.com/NVIDIA/DeepLearningExamples/zipball/torchhub" to /root/.cache/torch/hub/torchhub.zip
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/common.py:13: UserWarning: pytorch_quantization module not found, quantization will not be available
warnings.warn(
/root/.cache/torch/hub/NVIDIA_DeepLearningExamples_torchhub/PyTorch/Classification/ConvNets/image_classification/models/efficientnet.py:17: UserWarning: pytorch_quantization module not found, quantization will not be available
warnings.warn(
/pytorch/audio/ci_env/lib/python3.10/site-packages/torch/nn/utils/weight_norm.py:144: FutureWarning: `torch.nn.utils.weight_norm` is deprecated in favor of `torch.nn.utils.parametrizations.weight_norm`.
WeightNorm.apply(module, name, dim)
Downloading: "https://api.ngc.nvidia.com/v2/models/nvidia/waveglowpyt_fp32/versions/1/files/nvidia_waveglowpyt_fp32_20190306.pth" to /root/.cache/torch/hub/checkpoints/nvidia_waveglowpyt_fp32_20190306.pth

脚本总运行时间: (0 分 58.716 秒)