SelectTransform¶
- class torchrl.envs.transforms.SelectTransform(*selected_keys: NestedKey, keep_rewards: bool = True, keep_dones: bool = True)[源代码]¶
从输入 tensordict 中选择键。
- 通常,建议使用
ExcludeTransform
:此转换也 选择“action”(或 input_spec 中的其他键)、“done”和“reward”键,但其他键也可能必需。
- 参数:
*selected_keys (iterable of NestedKey) – 要选择的键的名称。如果键不存在,则会简单地忽略。
- 关键字参数:
keep_rewards (bool, optional) – 如果为
False
,则必须提供奖励键(如果要保留)。默认为True
。keep_dones (bool, optional) – 如果为
False
,则必须提供 done 键(如果要保留)。默认为True
。
示例
>>> import gymnasium >>> from torchrl.envs import GymWrapper >>> env = TransformedEnv( ... GymWrapper(gymnasium.make("Pendulum-v1")), ... SelectTransform("observation", "reward", "done", keep_dones=False), # we leave done behind ... ) >>> env.rollout(3) # the truncated key is now absent TensorDict( fields={ action: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False), done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.bool, is_shared=False), observation: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False), reward: Tensor(shape=torch.Size([3, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False), observation: Tensor(shape=torch.Size([3, 3]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([3]), device=cpu, is_shared=False)
- forward(next_tensordict: TensorDictBase) TensorDictBase ¶
读取输入 tensordict,并对选定的键应用转换。
默认情况下,此方法
直接调用
_apply_transform()
。不调用
_step()
或_call()
。
此方法不会在任何时候在 env.step 中调用。但是,它会在
sample()
中调用。注意
forward
也可以使用dispatch
将参数名称转换为键,并使用常规关键字参数。示例
>>> class TransformThatMeasuresBytes(Transform): ... '''Measures the number of bytes in the tensordict, and writes it under `"bytes"`.''' ... def __init__(self): ... super().__init__(in_keys=[], out_keys=["bytes"]) ... ... def forward(self, tensordict: TensorDictBase) -> TensorDictBase: ... bytes_in_td = tensordict.bytes() ... tensordict["bytes"] = bytes ... return tensordict >>> t = TransformThatMeasuresBytes() >>> env = env.append_transform(t) # works within envs >>> t(TensorDict(a=0)) # Works offline too.
- 通常,建议使用