RewardNormalizer¶
- class torchrl.trainers.RewardNormalizer(decay: float = 0.999, scale: float = 1.0, eps: float | None = None, log_pbar: bool = False, reward_key=None)[源代码]¶
奖励归一化器钩子。
- 参数:
decay (
float
, 可选) – 指数移动平均衰减参数。默认为 0.999scale (
float
, 可选) – 归一化后的奖励用于相乘的缩放因子。默认为 1.0。eps (
float
, 可选) – 用于防止数值下溢的 epsilon 抖动。默认为torch.finfo(DEFAULT_DTYPE).eps
,其中DEFAULT_DTYPE=torch.get_default_dtype()
。reward_key (str 或 tuple, 可选) – 在输入批次中查找奖励的键。默认为
("next", "reward")
示例
>>> reward_normalizer = RewardNormalizer() >>> trainer.register_op("batch_process", reward_normalizer.update_reward_stats) >>> trainer.register_op("process_optim_batch", reward_normalizer.normalize_reward)
- register(trainer: Trainer, name: str = 'reward_normalizer')[源代码]¶
Registers the hook in the trainer at a default location.
- 参数:
trainer (Trainer) – the trainer where the hook must be registered.
name (str) – the name of the hook.
注意
To register the hook at another location than the default, use
register_op()
.