快捷方式

并行视频解码:多进程与多线程

在本教程中,我们将探讨并行解码大量视频帧的不同方法。我们将比较三种并行策略:

  1. 基于 FFmpeg 的并行:使用 FFmpeg 的内部线程功能

  2. Joblib 多进程:将工作分配给多个进程

  3. Joblib 多线程:在单个进程中使用多个线程

我们将使用 joblib 进行并行处理,因为它提供了非常方便的 API 来将工作分配到多个进程或线程。但这只是 Python 中并行处理工作的一种方式。你绝对可以使用其他线程或进程池管理器。

让我们先定义一些用于基准测试和数据处理的实用函数。我们还将下载一个视频并将其重复多次以创建一个更长的版本。这模拟了处理需要高效处理的长视频。你可以忽略这部分,直接跳转到 帧采样策略

from typing import List
import torch
import requests
import tempfile
from pathlib import Path
import subprocess
from time import perf_counter_ns
from datetime import timedelta

from joblib import Parallel, delayed, cpu_count
from torchcodec.decoders import VideoDecoder


def bench(f, *args, num_exp=3, warmup=1, **kwargs):
    """Benchmark a function by running it multiple times and measuring execution time."""
    for _ in range(warmup):
        f(*args, **kwargs)

    times = []
    for _ in range(num_exp):
        start = perf_counter_ns()
        result = f(*args, **kwargs)
        end = perf_counter_ns()
        times.append(end - start)

    return torch.tensor(times).float(), result


def report_stats(times, unit="s"):
    """Report median and standard deviation of benchmark times."""
    mul = {
        "ns": 1,
        "µs": 1e-3,
        "ms": 1e-6,
        "s": 1e-9,
    }[unit]
    times = times * mul
    std = times.std().item()
    med = times.median().item()
    print(f"median = {med:.2f}{unit} ± {std:.2f}")
    return med


def split_indices(indices: List[int], num_chunks: int) -> List[List[int]]:
    """Split a list of indices into approximately equal chunks."""
    chunk_size = len(indices) // num_chunks
    chunks = []

    for i in range(num_chunks - 1):
        chunks.append(indices[i * chunk_size:(i + 1) * chunk_size])

    # Last chunk may be slightly larger
    chunks.append(indices[(num_chunks - 1) * chunk_size:])
    return chunks


def generate_long_video(temp_dir: str):
    # Video source: https://www.pexels.com/video/dog-eating-854132/
    # License: CC0. Author: Coverr.
    url = "https://videos.pexels.com/video-files/854132/854132-sd_640_360_25fps.mp4"
    response = requests.get(url, headers={"User-Agent": ""})
    if response.status_code != 200:
        raise RuntimeError(f"Failed to download video. {response.status_code = }.")

    short_video_path = Path(temp_dir) / "short_video.mp4"
    with open(short_video_path, 'wb') as f:
        for chunk in response.iter_content():
            f.write(chunk)

    # Create a longer video by repeating the short one 50 times
    long_video_path = Path(temp_dir) / "long_video.mp4"
    ffmpeg_command = [
        "ffmpeg", "-y",
        "-stream_loop", "49",  # repeat video 50 times
        "-i", str(short_video_path),
        "-c", "copy",
        str(long_video_path)
    ]
    subprocess.run(ffmpeg_command, check=True, stdout=subprocess.PIPE, stderr=subprocess.PIPE)

    return short_video_path, long_video_path


temp_dir = tempfile.mkdtemp()
short_video_path, long_video_path = generate_long_video(temp_dir)

decoder = VideoDecoder(long_video_path, seek_mode="approximate")
metadata = decoder.metadata

short_duration = timedelta(seconds=VideoDecoder(short_video_path).metadata.duration_seconds)
long_duration = timedelta(seconds=metadata.duration_seconds)
print(f"Original video duration: {int(short_duration.total_seconds() // 60)}m{int(short_duration.total_seconds() % 60):02d}s")
print(f"Long video duration: {int(long_duration.total_seconds() // 60)}m{int(long_duration.total_seconds() % 60):02d}s")
print(f"Video resolution: {metadata.width}x{metadata.height}")
print(f"Average FPS: {metadata.average_fps:.1f}")
print(f"Total frames: {metadata.num_frames}")
Original video duration: 0m13s
Long video duration: 11m30s
Video resolution: 640x360
Average FPS: 25.0
Total frames: 17250

帧采样策略

在本教程中,我们将从长视频中每 2 秒采样一帧。这模拟了一个常见的场景,即你需要处理一部分帧用于 LLM 推理。

TARGET_FPS = 2
step = max(1, round(metadata.average_fps / TARGET_FPS))
all_indices = list(range(0, metadata.num_frames, step))

print(f"Sampling 1 frame every {TARGET_FPS} seconds")
print(f"We'll skip every {step} frames")
print(f"Total frames to decode: {len(all_indices)}")
Sampling 1 frame every 2 seconds
We'll skip every 12 frames
Total frames to decode: 1438

方法 1:顺序解码(基准)

让我们从顺序方法开始作为我们的基准。这会逐帧处理,没有任何并行化。

def decode_sequentially(indices: List[int], video_path=long_video_path):
    """Decode frames sequentially using a single decoder instance."""
    decoder = VideoDecoder(video_path, seek_mode="approximate")
    return decoder.get_frames_at(indices)


times, result_sequential = bench(decode_sequentially, all_indices)
sequential_time = report_stats(times, unit="s")
median = 14.31s ± 0.02

方法 2:基于 FFmpeg 的并行

FFmpeg 具有内置的多线程功能,可以通过 num_ffmpeg_threads 参数进行控制。此方法利用 FFmpeg 内部的多个线程来加速解码操作。

def decode_with_ffmpeg_parallelism(
    indices: List[int],
    num_threads: int,
    video_path=long_video_path
):
    """Decode frames using FFmpeg's internal threading."""
    decoder = VideoDecoder(video_path, num_ffmpeg_threads=num_threads, seek_mode="approximate")
    return decoder.get_frames_at(indices)


NUM_CPUS = cpu_count()

times, result_ffmpeg = bench(decode_with_ffmpeg_parallelism, all_indices, num_threads=NUM_CPUS)
ffmpeg_time = report_stats(times, unit="s")
speedup = sequential_time / ffmpeg_time
print(f"Speedup compared to sequential: {speedup:.2f}x with {NUM_CPUS} FFmpeg threads.")
median = 7.09s ± 0.02
Speedup compared to sequential: 2.02x with 16 FFmpeg threads.

方法 3:多进程

基于进程的并行将工作分配给多个 Python 进程。

def decode_with_multiprocessing(
    indices: List[int],
    num_processes: int,
    video_path=long_video_path
):
    """Decode frames using multiple processes with joblib."""
    chunks = split_indices(indices, num_chunks=num_processes)

    # loky is a multi-processing backend for joblib: https://github.com/joblib/loky
    results = Parallel(n_jobs=num_processes, backend="loky", verbose=0)(
        delayed(decode_sequentially)(chunk, video_path) for chunk in chunks
    )

    return torch.cat([frame_batch.data for frame_batch in results], dim=0)


times, result_multiprocessing = bench(decode_with_multiprocessing, all_indices, num_processes=NUM_CPUS)
multiprocessing_time = report_stats(times, unit="s")
speedup = sequential_time / multiprocessing_time
print(f"Speedup compared to sequential: {speedup:.2f}x with {NUM_CPUS} processes.")
median = 5.39s ± 0.01
Speedup compared to sequential: 2.65x with 16 processes.

方法 4:Joblib 多线程

基于线程的并行在单个进程中使用多个线程。TorchCodec 会释放 GIL,因此这可能非常有效。

def decode_with_multithreading(
    indices: List[int],
    num_threads: int,
    video_path=long_video_path
):
    """Decode frames using multiple threads with joblib."""
    chunks = split_indices(indices, num_chunks=num_threads)

    results = Parallel(n_jobs=num_threads, prefer="threads", verbose=0)(
        delayed(decode_sequentially)(chunk, video_path) for chunk in chunks
    )

    # Concatenate results from all threads
    return torch.cat([frame_batch.data for frame_batch in results], dim=0)


times, result_multithreading = bench(decode_with_multithreading, all_indices, num_threads=NUM_CPUS)
multithreading_time = report_stats(times, unit="s")
speedup = sequential_time / multithreading_time
print(f"Speedup compared to sequential: {speedup:.2f}x with {NUM_CPUS} threads.")
median = 1.94s ± 0.01
Speedup compared to sequential: 7.38x with 16 threads.

验证和正确性检查

让我们验证所有方法是否都产生了相同的结果。

All good!
import shutil
shutil.rmtree(temp_dir)

脚本总运行时间: (2 分钟 1.981 秒)

由 Sphinx-Gallery 生成的画廊

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源