注意
转到末尾下载完整示例代码
权重流¶
TensorRT 中的权重流是一项强大的功能,旨在克服处理大型模型时的 GPU 内存限制。它通过在推理期间将权重数据从主机(CPU)内存流式传输到 GPU 内存,从而能够运行大于可用 GPU 内存的模型。
流式传输大量内存可能会导致性能下降。但如果权重流允许用户运行更大的批处理大小,则可以带来更高的吞吐量。这种增加的吞吐量有时可以弥补因流式传输权重而导致的性能下降。最佳的流式传输内存量因具体模型和硬件而异。通过尝试不同的内存限制,可以帮助找到流式传输开销和批处理大小优势之间的最佳平衡点。
本示例使用预训练的 Llama-2 模型,并展示如何将权重流功能与 Torch-TensorRT 结合使用。
编译选项 - 使用权重流功能构建 trt 引擎
运行时 API - 通过上下文管理器控制权重流预算
导入和模型定义¶
import copy
import timeit
import numpy as np
import torch
import torch_tensorrt
from transformers import AutoModelForCausalLM
def export_llm(model, inputs, min_seq_len=1, max_seq_len=16):
"""
Exports the LLM model into an ExportedProgram with dynamic shapes.
In the case of guard failures due to some PyTorch kernel implements, we also
try to re-export the graph by expressing them as runtime assert nodes
"""
with torch.no_grad():
# max=1024 has contraint violation error. https://github.com/pytorch/pytorch/issues/125604
seq_len = torch.export.Dim("seq_len", min=min_seq_len, max=max_seq_len)
position_ids = torch.arange(inputs.shape[1]).unsqueeze(0).to(inputs.device)
try:
print("Trying to export the model using torch.export.export()..")
# strict=False only enables aotautograd tracing and excludes dynamo.
ep = torch.export.export(
model,
args=(inputs,),
kwargs={"position_ids": position_ids},
dynamic_shapes=({1: seq_len}, {1: seq_len}),
strict=False,
)
except:
print(
"Trying torch.export._trace._export to trace the graph since torch.export.export() failed"
)
# This API is used to express the constraint violation guards as asserts in the graph.
ep = torch.export._trace._export(
model,
args=(inputs,),
kwargs={"position_ids": position_ids},
dynamic_shapes=({1: seq_len}, {1: seq_len}),
strict=False,
allow_complex_guards_as_runtime_asserts=True,
)
return ep
def time_generate(model, inputs, output_seq_length, iterations=10):
"""
Measure the time for generating a sentence over certain number of iterations
"""
# We only support single input (B x seq_len) for LLMs now
input_seq = inputs[0]
with torch.no_grad():
timings = []
for _ in range(iterations):
start_time = timeit.default_timer()
inputs_copy = copy.copy(input_seq)
# Greedy decoding of the model. This generates up to max_tokens.
while inputs_copy.shape[1] <= output_seq_length:
outputs = model(inputs_copy)
logits = outputs.logits
next_token_logits = logits[:, -1, :]
next_tokens = torch.argmax(next_token_logits, dim=-1)
inputs_copy = torch.cat([inputs_copy, next_tokens[:, None]], dim=-1)
torch.cuda.synchronize()
end_time = timeit.default_timer()
timings.append(end_time - start_time)
times = np.array(timings)
time_mean_ms = np.mean(times) * 1000
return time_mean_ms
# Load the LLaMA-2 model
DEVICE = torch.device("cuda:0")
llama_path = "meta-llama/Llama-2-7b-chat-hf"
with torch.no_grad():
model = AutoModelForCausalLM.from_pretrained(
llama_path, use_cache=False, attn_implementation="eager"
).eval()
# Set input and output sequence lengths
isl = 128
osl = 256
# Create random input tensors
input_tensors = [torch.randint(0, 5, (1, isl), dtype=torch.int64).cuda()]
# Convert the model to half precision (FP16)
model = model.half()
# Exports the LLM model into an ExportedProgram with dynamic shapes.
llama2_ep = export_llm(model, input_tensors[0], max_seq_len=osl)
编译器选项¶
要使用权重流功能构建引擎,需要设置 enable_weight_streaming=True 选项和 use_explicit_typing=True。use_explicit_typing=True 选项会创建一个强类型网络,并且在 enabled_precisions 选项中只允许使用 float32 精度。
# Create a TensorRT-compiled model
trt_model = torch_tensorrt.dynamo.compile(
llama2_ep,
inputs=input_tensors,
enabled_precisions={torch.float32},
truncate_double=True,
device=DEVICE,
use_explicit_typing=True,
enable_weight_streaming=True,
)
# Warm up for 3 iterations
_ = time_generate(trt_model, input_tensors, osl, 3)
使用自动预算大小运行¶
一旦指定了 enable_weight_streaming 编译选项,就会配置自动预算大小。这个自动确定的大小可能并不总是提供最优解,因为它缺乏对用户特定内存限制和使用模式的了解。
# Weight streaming context to get current weight budget information
weight_streaming_ctx = torch_tensorrt.runtime.weight_streaming(trt_model)
# Measure the mean latency of the model with weight streaming
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of current weight budget used
weight_budget_pct = (
weight_streaming_ctx.device_budget / weight_streaming_ctx.total_device_budget * 100
)
print(
f"Set weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)
使用权重流上下文管理器运行¶
可以使用权重流上下文管理器来限制权重流预算。预算大小的允许范围是从 0 到 ctx.total_device_budget。0 表示通过使用最小内存量实现最大程度的内存节省。等于 ctx.total_device_budget 的值将禁用权重流。如果创建了多个 trt 引擎,预算将按比例分配。
# Use a context manager for weight streaming
with torch_tensorrt.runtime.weight_streaming(trt_model) as weight_streaming_ctx:
# Get the total size of streamable weights in the engine
streamable_budget = weight_streaming_ctx.total_device_budget
# Scenario 1: Automatic weight streaming budget
# Get the automatically determined weight streaming budget
requested_budget = weight_streaming_ctx.get_automatic_weight_streaming_budget()
# Set the device budget to the automatically determined value
weight_streaming_ctx.device_budget = requested_budget
# Measure the mean latency with automatic budget
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of the weight budget used
weight_budget_pct = (
weight_streaming_ctx.device_budget
/ weight_streaming_ctx.total_device_budget
* 100
)
print(
f"Set auto weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)
# Scenario 2: Manual 10% weight streaming budget
# Set the budget to 10% of the total streamable weights
requested_budget = int(streamable_budget * 0.1)
weight_streaming_ctx.device_budget = requested_budget
# Measure the mean latency with 10% budget
mean_latency = time_generate(trt_model, input_tensors, osl, 1)
# Calculate the percentage of the weight budget used
weight_budget_pct = (
weight_streaming_ctx.device_budget
/ weight_streaming_ctx.total_device_budget
* 100
)
print(
f"Set weight streaming budget as {weight_budget_pct}%. {weight_streaming_ctx.device_budget} bytes out of {weight_streaming_ctx.total_device_budget}. mean latency = {mean_latency} ms"
)
脚本总运行时间: ( 0 分 0.000 秒)