QueryModule¶
- class torchrl.data.QueryModule(*args, **kwargs)[源]¶
用于生成兼容索引的模块。
一个查询存储并返回该存储所需索引的模块。目前,它只输出整数索引(torch.int64)。
- 参数:
in_keys (list of NestedKeys) – 将用于生成哈希值的输入 tensordict 的键。
index_key (NestedKey) – 将写入索引值的输出键。默认为
"_index"
。
- 关键字参数:
hash_key (NestedKey) – 将写入哈希值的输出键。默认为
"_hash"
。hash_module (Callable[[Any], int] 或 这些的可调用对象列表, 可选) – 一个类似于
SipHash
的哈希模块(默认)。如果提供了可调用对象列表,其长度必须等于 in_keys 的数量。hash_to_int (Callable[[int], int], 可选) – 一个有状态的函数,将哈希值映射到一个非负整数,该整数对应于存储中的索引。默认为
HashToInt
。aggregator (Callable[[int], int], 可选) – 一个用于将多个哈希值分组在一起的哈希函数。当有多个
in_keys
时,应仅传递此参数。如果提供了一个hash_module
但未传递聚合器,它将采用 hash_module 的值。如果未提供hash_module
或提供了hash_modules
的列表但未传递聚合器,它将默认为SipHash
。clone (bool, 可选) – 如果为
True
,则将返回输入 TensorDict 的浅拷贝。这可用于检索存储中与给定输入 tensordict 对应的整数索引。这可以通过向 forward 方法提供clone
参数在运行时覆盖。默认为False
。
示例
>>> query_module = QueryModule( ... in_keys=["key1", "key2"], ... index_key="index", ... hash_module=SipHash(), ... ) >>> query = TensorDict( ... { ... "key1": torch.Tensor([[1], [1], [1], [2]]), ... "key2": torch.Tensor([[3], [3], [2], [3]]), ... "other": torch.randn(4), ... }, ... batch_size=(4,), ... ) >>> res = query_module(query) >>> # The first two pairs of key1 and key2 match >>> assert res["index"][0] == res["index"][1] >>> # The last three pairs of key1 and key2 have at least one mismatching value >>> assert res["index"][1] != res["index"][2] >>> assert res["index"][2] != res["index"][3]
- add_module(name: str, module: Optional[Module]) None ¶
将子模块添加到当前模块。
可以使用给定的名称作为属性访问该模块。
- 参数:
name (str) – 子模块的名称。子模块可以通过给定名称从此模块访问
module (Module) – 要添加到模块中的子模块。
- apply(fn: Callable[[Module], None]) T ¶
将
fn
递归应用于每个子模块(由.children()
返回)以及自身。典型用法包括初始化模型的参数(另请参阅 torch.nn.init)。
- 参数:
fn (
Module
-> None) – 要应用于每个子模块的函数- 返回:
self
- 返回类型:
模块
示例
>>> @torch.no_grad() >>> def init_weights(m): >>> print(m) >>> if type(m) == nn.Linear: >>> m.weight.fill_(1.0) >>> print(m.weight) >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) >>> net.apply(init_weights) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Linear(in_features=2, out_features=2, bias=True) Parameter containing: tensor([[1., 1.], [1., 1.]], requires_grad=True) Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )
- bfloat16() T ¶
将所有浮点参数和缓冲区转换为
bfloat16
数据类型。注意
此方法就地修改模块。
- 返回:
self
- 返回类型:
模块
- buffers(recurse: bool = True) Iterator[Tensor] ¶
返回模块缓冲区的迭代器。
- 参数:
recurse (bool) – 如果为 True,则会产生此模块及其所有子模块的 buffer。否则,仅会产生此模块的直接成员 buffer。
- 产生:
torch.Tensor – 模块缓冲区
示例
>>> # xdoctest: +SKIP("undefined vars") >>> for buf in model.buffers(): >>> print(type(buf), buf.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- children() Iterator[Module] ¶
返回直接子模块的迭代器。
- 产生:
Module – 子模块
- compile(*args, **kwargs)¶
使用
torch.compile()
编译此模块的 forward 方法。此模块的 __call__ 方法被编译,所有参数将原样传递给
torch.compile()
。有关此函数的参数的详细信息,请参阅
torch.compile()
。
- cpu() T ¶
将所有模型参数和缓冲区移动到 CPU。
注意
此方法就地修改模块。
- 返回:
self
- 返回类型:
模块
- cuda(device: Optional[Union[int, device]] = None) T ¶
将所有模型参数和缓冲区移动到 GPU。
这也会使相关的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 GPU 上,则应在构建优化器之前调用此函数。
注意
此方法就地修改模块。
- 参数:
device (int, optional) – 如果指定,所有参数将复制到该设备
- 返回:
self
- 返回类型:
模块
- double() T ¶
将所有浮点参数和缓冲区转换为
double
数据类型。注意
此方法就地修改模块。
- 返回:
self
- 返回类型:
模块
- eval() T ¶
将模块设置为评估模式。
这只对某些模块有影响。请参阅特定模块的文档,了解它们在训练/评估模式下的行为,即它们是否受影响,例如
Dropout
、BatchNorm
等。这等同于
self.train(False)
。有关 .eval() 和其他可能与之混淆的类似机制的比较,请参阅 本地禁用梯度计算。
- 返回:
self
- 返回类型:
模块
- extra_repr() str ¶
返回模块的额外表示。
要打印自定义额外信息,您应该在自己的模块中重新实现此方法。单行和多行字符串均可接受。
- float() T ¶
将所有浮点参数和缓冲区转换为
float
数据类型。注意
此方法就地修改模块。
- 返回:
self
- 返回类型:
模块
- forward(tensordict: TensorDictBase, *, extend: bool = True, write_hash: bool = True, clone: bool | None = None) TensorDictBase [源]¶
定义每次调用时执行的计算。
所有子类都应重写此方法。
注意
虽然 forward 过程的 recipe 需要在此函数中定义,但应该在之后调用
Module
实例而不是此函数,因为前者负责运行已注册的钩子,而后者会默默地忽略它们。
- get_buffer(target: str) Tensor ¶
返回由
target
给定的缓冲区(如果存在),否则抛出错误。有关此方法的详细功能以及如何正确指定
target
,请参阅get_submodule
的文档字符串。- 参数:
target – 要查找的 buffer 的完全限定字符串名称。(要指定完全限定字符串,请参阅
get_submodule
。)- 返回:
由
target
引用的缓冲区- 返回类型:
- 抛出:
AttributeError – 如果目标字符串引用了无效路径或解析为非 buffer 对象。
- get_extra_state() Any ¶
返回要包含在模块 state_dict 中的任何额外状态。
如果您的模块需要存储额外状态,请实现此方法和对应的
set_extra_state()
。在构建模块的 state_dict() 时会调用此函数。请注意,额外状态必须是可序列化的,以确保 state_dict 的序列化正常工作。我们仅为序列化 Tensor 提供向后兼容性保证;其他对象的序列化腌制形式可能会发生变化,从而破坏向后兼容性。
- 返回:
要存储在模块 state_dict 中的任何额外状态
- 返回类型:
对象
- get_parameter(target: str) Parameter ¶
如果存在,返回由
target
给定的参数,否则抛出错误。有关此方法的详细功能以及如何正确指定
target
,请参阅get_submodule
的文档字符串。- 参数:
target – 要查找的 Parameter 的完全限定字符串名称。(要指定完全限定字符串,请参阅
get_submodule
。)- 返回:
由
target
引用的参数- 返回类型:
torch.nn.Parameter
- 抛出:
AttributeError – 如果目标字符串引用了无效路径或解析为非
nn.Parameter
的对象。
- get_submodule(target: str) Module ¶
如果存在,返回由
target
给定的子模块,否则抛出错误。例如,假设您有一个
nn.Module
A
,它看起来像这样A( (net_b): Module( (net_c): Module( (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) ) (linear): Linear(in_features=100, out_features=200, bias=True) ) )
(图示了一个
nn.Module
A
。A
包含一个嵌套的子模块net_b
,它本身有两个子模块net_c
和linear
。net_c
然后有一个子模块conv
。)要检查我们是否拥有
linear
子模块,我们将调用get_submodule("net_b.linear")
。要检查我们是否拥有conv
子模块,我们将调用get_submodule("net_b.net_c.conv")
。get_submodule
的运行时受目标字符串解析路径的模块嵌套深度限制。对named_modules
的查询会达到相同的结果,但它是相对于传递模块数量的 O(N)。因此,对于简单的检查以查看某些子模块是否存在,应始终使用get_submodule
。- 参数:
target – 要查找的子模块的完全限定字符串名称。(要指定完全限定字符串,请参阅上面的示例。)
- 返回:
由
target
引用的子模块- 返回类型:
- 抛出:
AttributeError – 如果在目标字符串解析路径的任何点上,(子)路径解析为不存在的属性名称或不是
nn.Module
实例的对象。
- half() T ¶
将所有浮点参数和缓冲区转换为
half
数据类型。注意
此方法就地修改模块。
- 返回:
self
- 返回类型:
模块
- ipu(device: Optional[Union[int, device]] = None) T ¶
将所有模型参数和缓冲区移动到 IPU。
这也会使关联的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 IPU 上,则应在构建优化器之前调用它。
注意
此方法就地修改模块。
- 参数:
device (int, optional) – 如果指定,所有参数将复制到该设备
- 返回:
self
- 返回类型:
模块
- static is_tdmodule_compatible(module)¶
检查模块是否与 TensorDictModule API 兼容。
- load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)¶
将
state_dict
中的参数和缓冲区复制到此模块及其后代中。如果
strict
为True
,则state_dict
的键必须与此模块的state_dict()
函数返回的键完全匹配。警告
如果
assign
为True
,则必须在调用load_state_dict
后创建优化器,除非get_swap_module_params_on_conversion()
为True
。- 参数:
state_dict (dict) – 包含参数和持久 buffer 的字典。
strict (bool, 可选) – 是否严格强制
state_dict
中的键与此模块的state_dict()
函数返回的键匹配。默认为True
assign (bool, 可选) – 当设置为
False
时,保留当前模块中张量的属性;设置为True
时,保留 state dict 中张量的属性。唯一的例外是requires_grad
字段Default: ``False`
- 返回:
- missing_keys 是一个包含任何预期键的 str 列表。
在提供的
state_dict
中缺失的任何键的字符串列表。
- unexpected_keys 是一个包含不匹配的键的 str 列表。
不期望但在提供的
state_dict
中存在的键。
- 返回类型:
NamedTuple
,包含missing_keys
和unexpected_keys
字段
注意
如果参数或缓冲区注册为
None
并且其对应的键存在于state_dict
中,load_state_dict()
将引发RuntimeError
。
- modules() Iterator[Module] ¶
返回网络中所有模块的迭代器。
- 产生:
Module – 网络中的一个模块
注意
重复的模块只返回一次。在以下示例中,
l
只返回一次。示例
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.modules()): ... print(idx, '->', m) 0 -> Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) ) 1 -> Linear(in_features=2, out_features=2, bias=True)
- mtia(device: Optional[Union[int, device]] = None) T ¶
将所有模型参数和缓冲区移动到 MTIA。
这也会使关联的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 MTIA 上,则应在构建优化器之前调用它。
注意
此方法就地修改模块。
- 参数:
device (int, optional) – 如果指定,所有参数将复制到该设备
- 返回:
self
- 返回类型:
模块
- named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.Tensor]] ¶
返回模块缓冲区上的迭代器,同时生成缓冲区的名称和缓冲区本身。
- 参数:
prefix (str) – 为所有 buffer 名称添加前缀。
recurse (bool, optional) – 如果为 True,则会生成此模块及其所有子模块的 buffers。否则,仅生成此模块直接成员的 buffers。默认为 True。
remove_duplicate (bool, optional) – 是否在结果中删除重复的 buffers。默认为 True。
- 产生:
(str, torch.Tensor) – 包含名称和缓冲区的元组
示例
>>> # xdoctest: +SKIP("undefined vars") >>> for name, buf in self.named_buffers(): >>> if name in ['running_var']: >>> print(buf.size())
- named_children() Iterator[tuple[str, 'Module']] ¶
返回对直接子模块的迭代器,生成模块的名称和模块本身。
- 产生:
(str, Module) – 包含名称和子模块的元组
示例
>>> # xdoctest: +SKIP("undefined vars") >>> for name, module in model.named_children(): >>> if name in ['conv4', 'conv5']: >>> print(module)
- named_modules(memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True)¶
返回网络中所有模块的迭代器,同时生成模块的名称和模块本身。
- 参数:
memo – 用于存储已添加到结果中的模块集合的 memo
prefix – 将添加到模块名称的名称前缀
remove_duplicate – 是否从结果中删除重复的模块实例
- 产生:
(str, Module) – 名称和模块的元组
注意
重复的模块只返回一次。在以下示例中,
l
只返回一次。示例
>>> l = nn.Linear(2, 2) >>> net = nn.Sequential(l, l) >>> for idx, m in enumerate(net.named_modules()): ... print(idx, '->', m) 0 -> ('', Sequential( (0): Linear(in_features=2, out_features=2, bias=True) (1): Linear(in_features=2, out_features=2, bias=True) )) 1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
- named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.nn.parameter.Parameter]] ¶
返回模块参数的迭代器,同时生成参数的名称和参数本身。
- 参数:
prefix (str) – 为所有参数名称添加前缀。
recurse (bool) – 如果为 True,则会生成此模块及其所有子模块的参数。否则,仅生成此模块直接成员的参数。
remove_duplicate (bool, optional) – 是否在结果中删除重复的参数。默认为 True。
- 产生:
(str, Parameter) – 包含名称和参数的元组
示例
>>> # xdoctest: +SKIP("undefined vars") >>> for name, param in self.named_parameters(): >>> if name in ['bias']: >>> print(param.size())
- parameters(recurse: bool = True) Iterator[Parameter] ¶
返回模块参数的迭代器。
这通常传递给优化器。
- 参数:
recurse (bool) – 如果为 True,则会生成此模块及其所有子模块的参数。否则,仅生成此模块直接成员的参数。
- 产生:
Parameter – 模块参数
示例
>>> # xdoctest: +SKIP("undefined vars") >>> for param in model.parameters(): >>> print(type(param), param.size()) <class 'torch.Tensor'> (20L,) <class 'torch.Tensor'> (20L, 1L, 5L, 5L)
- register_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]]) RemovableHandle ¶
在模块上注册一个反向传播钩子。
此函数已弃用,建议使用
register_full_backward_hook()
,并且此函数的功能将在未来版本中发生更改。- 返回:
一个句柄,可用于通过调用
handle.remove()
来移除添加的钩子- 返回类型:
torch.utils.hooks.RemovableHandle
- register_buffer(name: str, tensor: Optional[Tensor], persistent: bool = True) None ¶
向模块添加一个缓冲区。
这通常用于注册不应被视为模型参数的缓冲区。例如,BatchNorm 的
running_mean
不是参数,但它是模块状态的一部分。缓冲区默认是持久的,并将与参数一起保存。此行为可以通过将persistent
设置为False
来更改。持久缓冲区和非持久缓冲区之间的唯一区别在于,后者不会成为此模块state_dict
的一部分。可以使用给定名称作为属性访问缓冲区。
- 参数:
name (str) – buffer 的名称。可以使用给定的名称从此模块访问 buffer
tensor (Tensor 或 None) – 要注册的缓冲区。如果为
None
,则在缓冲区上运行的操作(如cuda
)将被忽略。如果为None
,则该缓冲区 **不** 包含在此模块的state_dict
中。persistent (bool) – 缓冲区是否是此模块
state_dict
的一部分。
示例
>>> # xdoctest: +SKIP("undefined vars") >>> self.register_buffer('running_mean', torch.zeros(num_features))
- register_forward_hook(hook: Union[Callable[[T, tuple[Any, ...], Any], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle ¶
在模块上注册一个前向钩子。
每次调用
forward()
计算输出后都会调用此钩子。如果
with_kwargs
为False
或未指定,则输入仅包含传递给模块的位置参数。关键字参数不会传递给钩子,只会传递给forward
。钩子可以修改输出。它可以就地修改输入,但这不会影响 forward,因为这是在forward()
调用之后调用的。钩子应具有以下签名hook(module, args, output) -> None or modified output
如果
with_kwargs
为True
,则 forward 钩子将接收传递给 forward 函数的kwargs
,并应返回可能已修改的输出。钩子应具有以下签名hook(module, args, kwargs, output) -> None or modified output
- 参数:
hook (Callable) – 用户定义的待注册钩子。
prepend (bool) – 如果为
True
,则提供的hook
将在对此torch.nn.Module
的所有现有forward
钩子之前触发。否则,提供的hook
将在对此torch.nn.Module
的所有现有forward
钩子之后触发。请注意,使用register_module_forward_hook()
注册的全局forward
钩子将在为此方法注册的所有钩子之前触发。默认为False
with_kwargs (bool) – 如果为
True
,则hook
将接收传递给 forward 函数的 kwargs。默认为False
always_call (bool) – 如果为
True
,则无论调用 Module 时是否引发异常,都会运行hook
。默认为False
- 返回:
一个句柄,可用于通过调用
handle.remove()
来移除添加的钩子- 返回类型:
torch.utils.hooks.RemovableHandle
- register_forward_pre_hook(hook: Union[Callable[[T, tuple[Any, ...]], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle ¶
在模块上注册一个前向预钩子。
每次调用
forward()
之前都会调用此钩子。如果
with_kwargs
为 false 或未指定,则输入仅包含传递给模块的位置参数。关键字参数不会传递给钩子,只会传递给forward
。钩子可以修改输入。用户可以返回一个元组或钩子中的单个修改值。我们将把该值包装成一个元组,如果返回的是单个值(除非该值已经是元组)。钩子应具有以下签名hook(module, args) -> None or modified input
如果
with_kwargs
为 true,则 forward pre-hook 将接收传递给 forward 函数的 kwargs。如果钩子修改了输入,则应同时返回 args 和 kwargs。钩子应具有以下签名hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
- 参数:
hook (Callable) – 用户定义的待注册钩子。
prepend (bool) – 如果为 true,则提供的
hook
将在对此torch.nn.Module
的所有现有forward_pre
钩子之前触发。否则,提供的hook
将在对此torch.nn.Module
的所有现有forward_pre
钩子之后触发。请注意,使用register_module_forward_pre_hook()
注册的全局forward_pre
钩子将在为此方法注册的所有钩子之前触发。默认为False
with_kwargs (bool) – 如果为 true,则
hook
将接收传递给 forward 函数的 kwargs。默认为False
- 返回:
一个句柄,可用于通过调用
handle.remove()
来移除添加的钩子- 返回类型:
torch.utils.hooks.RemovableHandle
- register_full_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle ¶
在模块上注册一个反向传播钩子。
hook 将在计算模块的梯度时被调用,即只有在计算模块输出的梯度时 hook 才会执行。hook 应具有以下签名
hook(module, grad_input, grad_output) -> tuple(Tensor) or None
grad_input
和grad_output
是包含相对于输入和输出的梯度的元组。钩子不应修改其参数,但可以根据需要返回一个相对于输入的新的梯度,该梯度将在后续计算中用于替换grad_input
。grad_input
将仅对应于作为位置参数提供的输入,并且所有关键字参数都将被忽略。grad_input
和grad_output
中的条目对于所有非 Tensor 参数将为None
。由于技术原因,当此钩子应用于模块时,其前向函数将接收传递给模块的每个张量的视图。类似地,调用者将接收模块前向函数返回的每个张量的视图。
警告
使用反向传播钩子时不允许就地修改输入或输出,否则将引发错误。
- 参数:
hook (Callable) – 要注册的用户定义钩子。
prepend (bool) – 如果为 true,则提供的
hook
将在对此torch.nn.Module
的所有现有backward
钩子之前触发。否则,提供的hook
将在对此torch.nn.Module
的所有现有backward
钩子之后触发。请注意,使用register_module_full_backward_hook()
注册的全局backward
钩子将在为此方法注册的所有钩子之前触发。
- 返回:
一个句柄,可用于通过调用
handle.remove()
来移除添加的钩子- 返回类型:
torch.utils.hooks.RemovableHandle
- register_full_backward_pre_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle ¶
在模块上注册一个反向预钩子。
每次计算模块的梯度时,将调用此钩子。钩子应具有以下签名
hook(module, grad_output) -> tuple[Tensor] or None
grad_output
是一个元组。钩子不应修改其参数,但可以根据需要返回一个相对于输出的新的梯度,该梯度将在后续计算中用于替换grad_output
。grad_output
中的条目对于所有非 Tensor 参数将为None
。由于技术原因,当此钩子应用于模块时,其前向函数将接收传递给模块的每个张量的视图。类似地,调用者将接收模块前向函数返回的每个张量的视图。
警告
使用反向传播钩子时不允许就地修改输入,否则将引发错误。
- 参数:
hook (Callable) – 要注册的用户定义钩子。
prepend (bool) – 如果为 true,则提供的
hook
将在对此torch.nn.Module
的所有现有backward_pre
钩子之前触发。否则,提供的hook
将在对此torch.nn.Module
的所有现有backward_pre
钩子之后触发。请注意,使用register_module_full_backward_pre_hook()
注册的全局backward_pre
钩子将在为此方法注册的所有钩子之前触发。
- 返回:
一个句柄,可用于通过调用
handle.remove()
来移除添加的钩子- 返回类型:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_post_hook(hook)¶
注册一个后钩子,用于在模块的
load_state_dict()
被调用后运行。- 它应该具有以下签名:
hook(module, incompatible_keys) -> None
参数
module
是注册此钩子的当前模块,参数incompatible_keys
是一个包含missing_keys
和unexpected_keys
属性的NamedTuple
。missing_keys
是一个list
ofstr
,包含缺失的键;unexpected_keys
是一个list
ofstr
,包含意外的键。如果需要,可以就地修改给定的 incompatible_keys。
请注意,当以
strict=True
调用load_state_dict()
时进行的检查会受到钩子对missing_keys
或unexpected_keys
所做修改的影响,正如预期的那样。向任一键集添加元素将导致在strict=True
时引发错误,而清空 missing 和 unexpected 键将避免错误。- 返回:
一个句柄,可用于通过调用
handle.remove()
来移除添加的钩子- 返回类型:
torch.utils.hooks.RemovableHandle
- register_load_state_dict_pre_hook(hook)¶
注册一个预钩子,用于在模块的
load_state_dict()
被调用之前运行。- 它应该具有以下签名:
hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950
- 参数:
hook (Callable) – 在加载状态字典之前将调用的可调用钩子。
- register_module(name: str, module: Optional[Module]) None ¶
别名:
add_module()
。
- register_parameter(name: str, param: Optional[Parameter]) None ¶
向模块添加一个参数。
可以使用给定名称作为属性访问该参数。
- 参数:
name (str) – 参数的名称。可以通过给定名称从该模块访问该参数。
param (Parameter 或 None) – 要添加到模块的参数。如果为
None
,则会忽略作用于参数的操作,例如cuda
。如果为None
,则该参数 **不会** 包含在模块的state_dict
中。
- register_state_dict_post_hook(hook)¶
注册
state_dict()
方法的后置钩子。- 它应该具有以下签名:
hook(module, state_dict, prefix, local_metadata) -> None
注册的钩子可以就地修改
state_dict
。
- register_state_dict_pre_hook(hook)¶
注册
state_dict()
方法的前置钩子。- 它应该具有以下签名:
hook(module, prefix, keep_vars) -> None
注册的钩子可用于在进行
state_dict
调用之前执行预处理。
- requires_grad_(requires_grad: bool = True) T ¶
更改自动梯度是否应记录此模块中参数的操作。
此方法就地设置参数的
requires_grad
属性。此方法有助于冻结模块的一部分以进行微调或单独训练模型的一部分(例如,GAN 训练)。
有关
.requires_grad_()
与其他可能与之混淆的类似机制的比较,请参阅 本地禁用梯度计算。- 参数:
requires_grad (bool) – 自动求导是否应记录此模块上的参数操作。默认为
True
。- 返回:
self
- 返回类型:
模块
- reset_out_keys()¶
将
out_keys
属性重置为其原始值。返回: 相同的模块,但
out_keys
值已重置。示例
>>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule, TensorDictSequential >>> import torch >>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"]) >>> mod.select_out_keys("d") >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> mod.reset_out_keys() >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
- reset_parameters_recursive(parameters: Optional[TensorDictBase] = None) Optional[TensorDictBase] ¶
递归地重置模块及其子模块的参数。
- 参数:
parameters (参数的 TensorDict, 可选) – 如果设置为 None,则模块将使用 self.parameters() 进行重置。否则,我们将原地重置 tensordict 中的参数。这对于参数本身未存储在模块中的函数式模块很有用。
- 返回:
新参数的 tensordict,仅当 parameters 不为 None 时返回。
示例
>>> from tensordict.nn import TensorDictModule >>> from torch import nn >>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU()) >>> old_param = net[0].weight.clone() >>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork']) >>> module.reset_parameters() >>> (old_param == net[0].weight).any() tensor(False)
此方法还支持函数式参数采样
>>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule >>> from torch import nn >>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU()) >>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork']) >>> params = TensorDict.from_module(module) >>> old_params = params.clone(recurse=True) >>> module.reset_parameters(params) >>> (old_params == params).any() False
- select_out_keys(*out_keys) TensorDictModuleBase ¶
选择将在输出 tensordict 中找到的键。
当一个人想丢弃复杂图中的中间键,或者当这些键的存在可能触发意外行为时,这很有用。
原始
out_keys
仍然可以通过module.out_keys_source
访问。- 参数:
*out_keys (字符串序列 或 字符串元组) – 应在输出 tensordict 中找到的 out_keys。
返回: 相同的模块,以就地修改方式返回,并更新了
out_keys
。最简单的用法是与
TensorDictModule
一起使用。示例
>>> from tensordict import TensorDict >>> from tensordict.nn import TensorDictModule, TensorDictSequential >>> import torch >>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"]) >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> mod.select_out_keys("d") >>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []) >>> mod(td) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此功能也将适用于分派的参数: .. rubric:: 示例
>>> mod(torch.zeros(()), torch.ones(())) tensor(2.)
此更改将原地发生(即返回相同的模块,并更新 out_keys 列表)。可以使用
TensorDictModuleBase.reset_out_keys()
方法将其恢复。示例
>>> mod.reset_out_keys() >>> mod(TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])) TensorDict( fields={ a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
这也将适用于其他类,例如 Sequential: .. rubric:: 示例
>>> from tensordict.nn import TensorDictSequential >>> seq = TensorDictSequential( ... TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["y"]), ... TensorDictModule(lambda x: x+1, in_keys=["y"], out_keys=["z"]), ... ) >>> td = TensorDict({"x": torch.zeros(())}, []) >>> seq(td) TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), y: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False) >>> seq.select_out_keys("z") >>> td = TensorDict({"x": torch.zeros(())}, []) >>> seq(td) TensorDict( fields={ x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
- set_extra_state(state: Any) None ¶
设置加载的 state_dict 中包含的额外状态。
此函数由
load_state_dict()
调用,用于处理 state_dict 中的任何额外状态。如果需要将额外状态存储在模块的 state_dict 中,请实现此函数以及相应的get_extra_state()
。- 参数:
state (dict) – 来自 state_dict 的额外状态
- set_submodule(target: str, module: Module, strict: bool = False) None ¶
如果存在,设置由
target
给定的子模块,否则抛出错误。注意
如果将
strict
设置为False
(默认值),则该方法将替换现有的子模块,或者在父模块存在时创建新的子模块。如果将strict
设置为True
,则该方法将仅尝试替换现有的子模块,并在子模块不存在时引发错误。例如,假设您有一个
nn.Module
A
,它看起来像这样A( (net_b): Module( (net_c): Module( (conv): Conv2d(3, 3, 3) ) (linear): Linear(3, 3) ) )
(图示了一个
nn.Module
A
。A
有一个嵌套的子模块net_b
,它本身有两个子模块net_c
和linear
。net_c
然后有一个子模块conv
。)要用新的
Linear
子模块覆盖Conv2d
,您可以调用set_submodule("net_b.net_c.conv", nn.Linear(1, 1))
,其中strict
可以是True
或False
。要向现有的
net_b
模块添加新的Conv2d
子模块,您可以调用set_submodule("net_b.conv", nn.Conv2d(1, 1, 1))
。在上面的示例中,如果您设置
strict=True
并调用set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True)
,则会引发 AttributeError,因为net_b
没有名为conv
的子模块。- 参数:
target – 要查找的子模块的完全限定字符串名称。(要指定完全限定字符串,请参阅上面的示例。)
module – 要设置子模块的对象。
strict – 如果为
False
,则该方法将替换现有的子模块,或者在父模块存在时创建新的子模块。如果为True
,则该方法将仅尝试替换现有的子模块,并在子模块不存在时引发错误。
- 抛出:
ValueError – 如果
target
字符串为空,或者module
不是nn.Module
的实例。AttributeError – 如果沿
target
字符串解析的路径中的任何一点,(子)路径解析为不存在的属性名或不是nn.Module
实例的对象。
- state_dict(*args, destination=None, prefix='', keep_vars=False)¶
返回一个字典,其中包含对模块整个状态的引用。
参数和持久缓冲区(例如,运行平均值)都包含在内。键是相应的参数和缓冲区名称。设置为
None
的参数和缓冲区不包含在内。注意
返回的对象是浅拷贝。它包含对模块参数和缓冲区的引用。
警告
当前
state_dict()
还接受按顺序排列的destination
、prefix
和keep_vars
的位置参数。但是,这正在被弃用,并且将在未来的版本中强制使用关键字参数。警告
请避免使用参数
destination
,因为它不是为最终用户设计的。- 参数:
destination (dict, 可选) – 如果提供,则模块的状态将被更新到字典中,并返回相同的对象。否则,将创建并返回一个
OrderedDict
。默认值:None
。prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default:
''
。keep_vars (bool, 可选) – 默认情况下,在 state dict 中返回的
Tensor
会从 autograd 中分离。如果将其设置为True
,则不会执行分离。默认值:False
。
- 返回:
包含模块整体状态的字典
- 返回类型:
dict
示例
>>> # xdoctest: +SKIP("undefined vars") >>> module.state_dict().keys() ['bias', 'weight']
- to(*args, **kwargs)¶
移动和/或转换参数和缓冲区。
这可以这样调用
- to(device=None, dtype=None, non_blocking=False)
- to(dtype, non_blocking=False)
- to(tensor, non_blocking=False)
- to(memory_format=torch.channels_last)
其签名与
torch.Tensor.to()
类似,但仅接受浮点数或复数dtype
。此外,此方法仅将浮点数或复数参数和缓冲区转换为dtype
(如果已提供)。整数参数和缓冲区将被移动到device
(如果已提供),但 dtype 不变。当设置non_blocking
时,它会尝试在可能的情况下与主机进行异步转换/移动(例如,将具有固定内存的 CPU Tensor 移动到 CUDA 设备)。有关示例,请参阅下文。
注意
此方法就地修改模块。
- 参数:
device (
torch.device
) – 模块中参数和缓冲区的目标设备。dtype (
torch.dtype
) – 模块中参数和缓冲区的目标浮点数或复数 dtype。tensor (torch.Tensor) – 其 dtype 和设备是此模块中所有参数和缓冲区的目标 dtype 和设备。
memory_format (
torch.memory_format
) – 模块中 4D 参数和缓冲区的目标内存格式(仅关键字参数)。
- 返回:
self
- 返回类型:
模块
示例
>>> # xdoctest: +IGNORE_WANT("non-deterministic") >>> linear = nn.Linear(2, 2) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]]) >>> linear.to(torch.double) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1913, -0.3420], [-0.5113, -0.2325]], dtype=torch.float64) >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) >>> gpu1 = torch.device("cuda:1") >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') >>> cpu = torch.device("cpu") >>> linear.to(cpu) Linear(in_features=2, out_features=2, bias=True) >>> linear.weight Parameter containing: tensor([[ 0.1914, -0.3420], [-0.5112, -0.2324]], dtype=torch.float16) >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) >>> linear.weight Parameter containing: tensor([[ 0.3741+0.j, 0.2382+0.j], [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) tensor([[0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j], [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
- to_empty(*, device: Optional[Union[int, str, device]], recurse: bool = True) T ¶
将参数和缓冲区移动到指定设备,而不复制存储。
- 参数:
device (
torch.device
) – 模块中参数和缓冲区的目标设备。recurse (bool) – 是否递归地将子模块的参数和缓冲区移动到指定设备。
- 返回:
self
- 返回类型:
模块
- train(mode: bool = True) T ¶
将模块设置为训练模式。
这只对某些模块有影响。有关它们在训练/评估模式下的行为的详细信息,例如它们是否受影响,请参阅特定模块的文档,例如
Dropout
、BatchNorm
等。- 参数:
mode (bool) – 设置训练模式(
True
)或评估模式(False
)。默认值:True
。- 返回:
self
- 返回类型:
模块
- type(dst_type: Union[dtype, str]) T ¶
将所有参数和缓冲区转换为
dst_type
。注意
此方法就地修改模块。
- 参数:
dst_type (type or string) – 目标类型
- 返回:
self
- 返回类型:
模块
- xpu(device: Optional[Union[int, device]] = None) T ¶
将所有模型参数和缓冲区移动到 XPU。
这也会使关联的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 XPU 上,则应在构建优化器之前调用它。
注意
此方法就地修改模块。
- 参数:
device (int, optional) – 如果指定,所有参数将复制到该设备
- 返回:
self
- 返回类型:
模块
- zero_grad(set_to_none: bool = True) None ¶
重置所有模型参数的梯度。
有关更多背景信息,请参阅
torch.optim.Optimizer
下的类似函数。- 参数:
set_to_none (bool) – 不设置为零,而是将梯度设置为 None。有关详细信息,请参阅
torch.optim.Optimizer.zero_grad()
。