RemoteTensorDictReplayBuffer¶
- class torchrl.data.RemoteTensorDictReplayBuffer(*args, **kwargs)[源代码]¶
一个对远程调用友好的 ReplayBuffer 类。公共方法可以通过 torch.rpc 由远程代理调用,或在本地正常调用。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer ¶
将变换附加到末尾。
调用 sample 时按顺序应用变换。
- 参数:
transform (Transform) – 要附加的变换
- 关键字参数:
invert (bool, optional) – 如果
True
,则转换将被反转(前向调用将在写入时调用,反向调用将在读取时调用)。默认为False
。
示例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- classmethod as_remote(remote_config=None)¶
创建一个远程 ray 类的实例。
- 参数:
cls (Python Class) – 要远程实例化的类。
remote_config (dict) – 为该类保留的 CPU 核心数量。默认为 torchrl.collectors.distributed.ray.DEFAULT_REMOTE_CLASS_CONFIG。
- 返回:
一个创建 ray 远程类实例的函数。
- property batch_size¶
重放缓冲区的批次大小。
可以通过在
sample()
方法中设置 batch_size 参数来覆盖批次大小。它定义了
sample()
返回的样本数量以及ReplayBuffer
迭代器产生的样本数量。
- dumps(path)¶
将重放缓冲区保存到指定路径的磁盘上。
- 参数:
path (Path 或 str) – 保存重放缓冲区的路径。
示例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty(empty_write_count: bool = True)¶
清空重放缓冲区并将游标重置为 0。
- 参数:
empty_write_count (bool, optional) – 是否清空 write_count 属性。默认为 True。
- extend(tensordicts: list | TensorDictBase, *, update_priority: bool | None = None) torch.Tensor [源代码]¶
使用数据批次扩展重放缓冲区。
- 参数:
tensordicts (TensorDictBase) – 用于扩展重放缓冲区的数据。
- 关键字参数:
update_priority (bool, optional) – 是否更新数据的优先级。默认为 True。
- 返回:
已添加到重放缓冲区的数据的索引。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer ¶
插入变换。
调用 sample 时按顺序执行变换。
- 参数:
index (int) – 插入变换的位置。
transform (Transform) – 要附加的变换
- 关键字参数:
invert (bool, optional) – 如果
True
,则转换将被反转(前向调用将在写入时调用,反向调用将在读取时调用)。默认为False
。
- loads(path)¶
在给定路径加载重放缓冲区状态。
缓冲区应具有匹配的组件,并使用
dumps()
保存。- 参数:
path (Path 或 str) – 重放缓冲区保存的路径。
有关更多信息,请参阅
dumps()
。
- next()¶
返回重放缓冲区的下一个项。
此方法用于在 __iter__ 不可用的情况下迭代重放缓冲区,例如
RayReplayBuffer
。
- register_load_hook(hook: Callable[[Any], Any])¶
为存储注册加载钩子。
注意
钩子目前不会在保存重放缓冲区时序列化:每次创建缓冲区时都必须手动重新初始化它们。
- register_save_hook(hook: Callable[[Any], Any])¶
为存储注册保存钩子。
注意
钩子目前不会在保存重放缓冲区时序列化:每次创建缓冲区时都必须手动重新初始化它们。
- sample(batch_size: int | None = None, include_info: bool | None = None, return_info: bool = False) TensorDictBase [源代码]¶
从重放缓冲区中采样数据批次。
使用 Sampler 采样索引,并从 Storage 中检索它们。
- 参数:
batch_size (int, optional) – 要收集的数据的大小。如果未提供,此方法将采样由采样器指示的批次大小。
return_info (bool) – 是否返回信息。如果为 True,则结果为元组 (data, info)。如果为 False,则结果为数据。
- 返回:
一个包含在重放缓冲区中选择的数据批次的 tensordict。如果 return_info 标志设置为 True,则包含此 tensordict 和信息的元组。
- set_storage(storage: Storage, collate_fn: Callable | None = None)¶
在重放缓冲区中设置新的存储并返回之前的存储。
- 参数:
storage (Storage) – 缓冲区的新的存储。
collate_fn (callable, optional) – 如果提供,collate_fn 将设置为此值。否则,它将被重置为默认值。
- property write_count¶
通过 add 和 extend 写入缓冲区的总项数。