快捷方式

JumanjiWrapper

torchrl.envs.JumanjiWrapper(*args, **kwargs)[源代码]

Jumanji 的环境包装器。

Jumanji 提供了一个基于 Jax 的向量化模拟框架。TorchRL 的包装器会为了 jax 到 torch 的转换而产生一些开销,但计算图仍然可以在模拟轨迹之上构建,从而允许通过 rollout 进行反向传播。

GitHub: https://github.com/instadeepai/jumanji

文档: https://instadeepai.github.io/jumanji/

论文: https://arxiv.org/abs/2306.09884

注意

为了获得更好的性能,在实例化此类时请打开 jitjit 属性也可以在代码执行期间进行切换。

>>> env.jit = True # Used jit
>>> env.jit = False # eager
参数:
  • env (jumanji.env.Environment) – 要包装的环境。

  • categorical_action_encoding (bool, optional) – 如果为 True,则分类规范将转换为 TorchRL 等效项(torchrl.data.Categorical),否则将使用独热编码(torchrl.data.OneHot)。默认为 False

关键字参数:
  • batch_size (torch.Size, optional) –

    环境的批次大小。使用 jumanji 时,这表示向量化环境的数量。如果批次大小为空,则环境未锁定批次,可以同时执行任意数量的环境。默认为 torch.Size([])

    >>> import jumanji
    >>> from torchrl.envs import JumanjiWrapper
    >>> base_env = jumanji.make("Snake-v1")
    >>> env = JumanjiWrapper(base_env)
    >>> # Set the batch-size of the TensorDict instead of the env allows to control the number
    >>> #  of envs being run simultaneously
    >>> tdreset = env.reset(TensorDict(batch_size=[32]))
    >>> # Execute a rollout until all envs are done or max steps is reached, whichever comes first
    >>> rollout = env.rollout(100, break_when_all_done=True, auto_reset=False, tensordict=tdreset)
    

  • from_pixels (bool, optional) – 环境是否应渲染其输出。这将极大地影响环境吞吐量。只有第一个环境将被渲染。有关更多信息,请参见 render()。默认为 False

  • frame_skip (int, optional) – 如果提供,表示同一个动作需要重复多少步。返回的观察是序列的最后一次观察,而奖励将是跨步骤的奖励总和。

  • device (torch.device, optional) – 如果提供,表示数据要投射到的设备。默认为 torch.device("cpu")

  • allow_done_after_reset (bool, optional) – 如果为 True,则允许环境在调用 reset() 后立即完成。默认为 False

  • jit (bool, optional) – 步进和重置方法是否应包装在 jit 中。默认为 False

变量:

available_envs – 可用于构建的环境

示例

>>> import jumanji
>>> from torchrl.envs import JumanjiWrapper
>>> base_env = jumanji.make("Snake-v1")
>>> env = JumanjiWrapper(base_env)
>>> env.set_seed(0)
>>> td = env.reset()
>>> td["action"] = env.action_spec.rand()
>>> td = env.step(td)
>>> print(td)
TensorDict(
    fields={
        action: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
        action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
        done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
        grid: Tensor(shape=torch.Size([12, 12, 5]), device=cpu, dtype=torch.float32, is_shared=False),
        next: TensorDict(
            fields={
                action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
                done: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False),
                grid: Tensor(shape=torch.Size([12, 12, 5]), device=cpu, dtype=torch.float32, is_shared=False),
                reward: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False),
                state: TensorDict(
                    fields={
                        action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
                        body: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False),
                        body_state: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.int32, is_shared=False),
                        fruit_position: TensorDict(
                            fields={
                                col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                                row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=cpu,
                            is_shared=False),
                        head_position: TensorDict(
                            fields={
                                col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                                row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                            batch_size=torch.Size([]),
                            device=cpu,
                            is_shared=False),
                        key: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int32, is_shared=False),
                        length: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        tail: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=cpu,
                    is_shared=False),
                step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([]),
            device=cpu,
            is_shared=False),
        state: TensorDict(
            fields={
                action_mask: Tensor(shape=torch.Size([4]), device=cpu, dtype=torch.bool, is_shared=False),
                body: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False),
                body_state: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.int32, is_shared=False),
                fruit_position: TensorDict(
                    fields={
                        col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=cpu,
                    is_shared=False),
                head_position: TensorDict(
                    fields={
                        col: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                        row: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False)},
                    batch_size=torch.Size([]),
                    device=cpu,
                    is_shared=False),
                key: Tensor(shape=torch.Size([2]), device=cpu, dtype=torch.int32, is_shared=False),
                length: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
                tail: Tensor(shape=torch.Size([12, 12]), device=cpu, dtype=torch.bool, is_shared=False)},
            batch_size=torch.Size([]),
            device=cpu,
            is_shared=False),
        step_count: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.int32, is_shared=False),
        terminated: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.bool, is_shared=False)},
    batch_size=torch.Size([]),
    device=cpu,
    is_shared=False)
>>> print(env.available_envs)
['Game2048-v1',
 'Maze-v0',
 'Cleaner-v0',
 'CVRP-v1',
 'MultiCVRP-v0',
 'Minesweeper-v0',
 'RubiksCube-v0',
 'Knapsack-v1',
 'Sudoku-v0',
 'Snake-v1',
 'TSP-v1',
 'Connector-v2',
 'MMST-v0',
 'GraphColoring-v0',
 'RubiksCube-partly-scrambled-v0',
 'RobotWarehouse-v0',
 'Tetris-v0',
 'BinPack-v2',
 'Sudoku-very-easy-v0',
 'JobShop-v0']

为了利用 Jumanji 的优势,通常会同时执行多个环境。

>>> import jumanji
>>> from torchrl.envs import JumanjiWrapper
>>> base_env = jumanji.make("Snake-v1")
>>> env = JumanjiWrapper(base_env, batch_size=[10])
>>> env.set_seed(0)
>>> td = env.reset()
>>> td["action"] = env.action_spec.rand()
>>> td = env.step(td)

在下面的示例中,我们迭代测试不同的批次大小,并报告短 rollout 的执行时间。

示例

>>> from torch.utils.benchmark import Timer
>>> for batch_size in [4, 16, 128]:
...     timer = Timer(
...     '''
... env.rollout(100)
... ''',
... setup=f'''
... from torchrl.envs import JumanjiWrapper
... import jumanji
... env = JumanjiWrapper(jumanji.make('Snake-v1'), batch_size=[{batch_size}])
... env.set_seed(0)
... env.rollout(2)
... ''')
...     print(batch_size, timer.timeit(number=10))
4
env.rollout(100)
setup: [...]
Median: 122.40 ms
2 measurements, 1 runs per measurement, 1 thread

16 env.rollout(100) 设置: […] 中位数:134.39 毫秒 2 次测量,每次测量 1 次运行,1 个线程

128 env.rollout(100) 设置: […] 中位数:172.31 毫秒 2 次测量,每次测量 1 次运行,1 个线程

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源