快捷方式

make_composite_from_td

torchrl.envs.make_composite_from_td(data, *, unsqueeze_null_shapes: bool = True, dynamic_shape: bool = False)[源代码]

从 tensordict 创建 Composite 实例,假定所有值都是无界的。

参数:

data (tensordict.TensorDict) – 要映射到 Composite 的 tensordict。

关键字参数:
  • unsqueeze_null_shapes (bool, optional) – 如果为 True,则所有空 shape 都将被 unsqueeze 到 (1,)。默认为 True

  • dynamic_shape (bool, optional) – 如果为 True,则假定所有张量沿最后一个维度都具有动态 shape。默认为 False

示例

>>> from tensordict import TensorDict
>>> data = TensorDict({
...     "obs": torch.randn(3),
...     "action": torch.zeros(2, dtype=torch.int),
...     "next": {"obs": torch.randn(3), "reward": torch.randn(1)}
... }, [])
>>> spec = make_composite_from_td(data)
>>> print(spec)
Composite(
    obs: UnboundedContinuous(
         shape=torch.Size([3]), space=None, device=cpu, dtype=torch.float32, domain=continuous),
    action: UnboundedContinuous(
         shape=torch.Size([2]), space=None, device=cpu, dtype=torch.int32, domain=continuous),
    next: Composite(
        obs: UnboundedContinuous(
             shape=torch.Size([3]), space=None, device=cpu, dtype=torch.float32, domain=continuous),
        reward: UnboundedContinuous(
             shape=torch.Size([1]), space=ContinuousBox(low=Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, contiguous=True), high=Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, contiguous=True)), device=cpu, dtype=torch.float32, domain=continuous), device=cpu, shape=torch.Size([])), device=cpu, shape=torch.Size([]))
>>> assert (spec.zero() == data.zero_()).all()

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源