快捷方式

Compose

class torchrl.envs.transforms.Compose(*transforms: Transform)[源代码]

组合一系列转换。

Transform``callable``s 均可接受。

示例

>>> env = GymEnv("Pendulum-v0")
>>> transforms = [RewardScaling(1.0, 1.0), RewardClipping(-2.0, 2.0)]
>>> transforms = Compose(*transforms)
>>> transformed_env = TransformedEnv(env, transforms)
append(transform: Transform | Callable[[TensorDictBase], TensorDictBase]) None[源代码]

将转换附加到链中。

Transform 或 callable 均可接受。

close()[源代码]

关闭转换。

forward(tensordict: TensorDictBase) TensorDictBase[源代码]

读取输入 tensordict,并对选定的键应用转换。

默认情况下,此方法

  • 直接调用 _apply_transform()

  • 不调用 _step()_call()

此方法不会在任何时刻在 env.step 内调用。但是,它会在 sample() 内被调用。

注意

forward 还可以使用 dispatch 通过将参数名称强制转换为键来处理常规关键字参数。

示例

>>> class TransformThatMeasuresBytes(Transform):
...     '''Measures the number of bytes in the tensordict, and writes it under `"bytes"`.'''
...     def __init__(self):
...         super().__init__(in_keys=[], out_keys=["bytes"])
...
...     def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
...         bytes_in_td = tensordict.bytes()
...         tensordict["bytes"] = bytes
...         return tensordict
>>> t = TransformThatMeasuresBytes()
>>> env = env.append_transform(t) # works within envs
>>> t(TensorDict(a=0))  # Works offline too.
init(tensordict: TensorDictBase) None[源代码]

运行转换的初始化步骤。

insert(index: int, transform: Transform | Callable[[TensorDictBase], TensorDictBase]) None[源代码]

将转换插入到链中的指定位置。

Transform 或 callable 均可接受。

pop(index: int | None = None) Transform[源代码]

从链中弹出转换。

参数:

index (int, optional) – 要弹出的转换的索引。如果为 None,则弹出最后一个转换。

返回:

弹出的转换。

to(*args, **kwargs)[源代码]

移动和/或转换参数和缓冲区。

这可以这样调用

to(device=None, dtype=None, non_blocking=False)[源代码]
to(dtype, non_blocking=False)[源代码]
to(tensor, non_blocking=False)[源代码]
to(memory_format=torch.channels_last)[源代码]

其签名类似于 torch.Tensor.to(),但仅接受浮点或复数 dtype。此外,此方法只会将浮点或复数参数和缓冲区转换为 dtype(如果给定)。如果提供了 device,则整数参数和缓冲区将被移动到 device,但 dtype 保持不变。当设置 non_blocking 时,它会尝试异步(相对于主机)转换/移动,例如将具有固定内存的 CPU Tensor 移动到 CUDA 设备。

有关示例,请参阅下文。

注意

此方法就地修改模块。

参数:
  • device (torch.device) – 此模块中参数和缓冲区的目标设备

  • dtype (torch.dtype) – 此模块中参数和缓冲区的目标浮点或复数 dtype

  • tensor (torch.Tensor) – 其 dtype 和设备是此模块所有参数和缓冲区的目标 dtype 和设备

  • memory_format (torch.memory_format) – 此模块中 4D 参数和缓冲区的目标内存格式(仅关键字参数)

返回:

self

返回类型:

模块

示例

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j,  0.2382+0.j],
        [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
transform_action_spec(action_spec: TensorSpec) TensorSpec[源代码]

转换动作规范,使结果规范与变换映射匹配。

参数:

action_spec (TensorSpec) – 变换前的规范

返回:

转换后的预期规范

transform_env_batch_size(batch_size: torch.batch_size)[源代码]

转换父环境的 batch-size。

transform_env_device(device: device)[源代码]

转换父环境的 device。

transform_input_spec(input_spec: TensorSpec) TensorSpec[源代码]

转换输入规范,使结果规范与转换映射匹配。

参数:

input_spec (TensorSpec) – 转换前的规范

返回:

转换后的预期规范

transform_observation_spec(observation_spec: TensorSpec) TensorSpec[源代码]

转换观察规范,使结果规范与转换映射匹配。

参数:

observation_spec (TensorSpec) – 转换前的规范

返回:

转换后的预期规范

transform_output_spec(output_spec: TensorSpec) TensorSpec[源代码]

转换输出规范,使结果规范与转换映射匹配。

此方法通常应保持不变。更改应通过 transform_observation_spec()transform_reward_spec()transform_full_done_spec() 实现。:param output_spec: 转换之前的 spec :type output_spec: TensorSpec

返回:

转换后的预期规范

transform_reward_spec(reward_spec: TensorSpec) TensorSpec[源代码]

转换奖励的 spec,使其与变换映射匹配。

参数:

reward_spec (TensorSpec) – 变换前的 spec

返回:

转换后的预期规范

transform_state_spec(state_spec: TensorSpec) TensorSpec[源代码]

转换状态规范,使结果规范与变换映射匹配。

参数:

state_spec (TensorSpec) – 变换前的规范

返回:

转换后的预期规范

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源