PermuteTransform¶
- class torchrl.envs.transforms.PermuteTransform(dims, in_keys=None, out_keys=None, in_keys_inv=None, out_keys_inv=None)[源码]¶
排列变换。
沿所需维度排列输入张量。必须沿特征维度(而不是批次维度)提供排列。
- 参数:
dims (list of int) – 维度的排列顺序。必须是对
[-(len(dims)), ..., -1]
的维度的重新排序。in_keys (list of NestedKeys) – 输入条目(读取)。
out_keys (list of NestedKeys) – 输入条目(写入)。如果未提供,则默认为
in_keys
。in_keys_inv (list of NestedKeys) –
inv()
调用期间的输入条目(读取)。out_keys_inv (list of NestedKeys) –
inv()
调用期间的输入条目(写入)。如果未提供,则默认为in_keys_in
。
示例
>>> from torchrl.envs.libs.gym import GymEnv >>> base_env = GymEnv("ALE/Pong-v5") >>> base_env.rollout(2) TensorDict( fields={ action: Tensor(shape=torch.Size([2, 6]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), pixels: Tensor(shape=torch.Size([2, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([2, 210, 160, 3]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False) >>> env = TransformedEnv(base_env, PermuteTransform((-1, -3, -2), in_keys=["pixels"])) >>> env.rollout(2) # channels are at the end TensorDict( fields={ action: Tensor(shape=torch.Size([2, 6]), device=cpu, dtype=torch.int64, is_shared=False), done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.bool, is_shared=False), pixels: Tensor(shape=torch.Size([2, 3, 210, 160]), device=cpu, dtype=torch.uint8, is_shared=False), reward: Tensor(shape=torch.Size([2, 1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False), pixels: Tensor(shape=torch.Size([2, 3, 210, 160]), device=cpu, dtype=torch.uint8, is_shared=False)}, batch_size=torch.Size([2]), device=cpu, is_shared=False)
- transform_input_spec(input_spec: TensorSpec) TensorSpec [源码]¶
转换输入规范,使结果规范与转换映射匹配。
- 参数:
input_spec (TensorSpec) – 转换前的规范
- 返回:
转换后的预期规范
- transform_observation_spec(observation_spec: TensorSpec) TensorSpec [源码]¶
转换观察规范,使结果规范与转换映射匹配。
- 参数:
observation_spec (TensorSpec) – 转换前的规范
- 返回:
转换后的预期规范