快捷方式

DDPGLoss

class torchrl.objectives.DDPGLoss(*args, **kwargs)[源代码]

DDPG 损失类。

参数:
  • actor_network (TensorDictModule) – 策略运算符。

  • value_network (TensorDictModule) – Q 值运算符。

  • loss_function (str) – 价值差异的损失函数。可以是 “l1”、“l2” 或 “smooth_l1” 之一。

  • delay_actor (bool, optional) – 是否将目标 actor 网络与用于数据收集的 actor 网络分开。默认为 False

  • delay_value (bool, optional) – 是否将目标 value 网络与用于数据收集的 value 网络分开。默认为 True

  • separate_losses (bool, optional) – 如果为 True,则策略和 critic 之间的共享参数将仅在策略损失上进行训练。默认为 False,即梯度会传播到策略和 critic 损失的共享参数。

  • reduction (str, optional) – 指定应用于输出的归约:"none" | "mean" | "sum""none":不应用归约,"mean":输出的总和将除以输出中的元素数量,"sum":输出将求和。默认为 "mean"

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator
>>> from torchrl.objectives.ddpg import DDPGLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act))
>>> class ValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> value = ValueOperator(
...     module=module,
...     in_keys=["observation", "action"])
>>> loss = DDPGLoss(actor, value)
>>> batch = [2, ]
>>> data = TensorDict({
...        "observation": torch.randn(*batch, n_obs),
...        "action": spec.rand(batch),
...        ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...        ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...        ("next", "reward"): torch.randn(*batch, 1),
...        ("next", "observation"): torch.randn(*batch, n_obs),
...    }, batch)
>>> loss(data)
TensorDict(
    fields={
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        pred_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        target_value_max: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此类也兼容非 tensordict 的模块,并且可以在不依赖任何 tensordict 相关原语的情况下使用。在这种情况下,预期的关键字参数是:["next_reward", "next_done", "next_terminated"] + actor_network 和 value_network 的 in_keys。返回值是一个元组,按以下顺序排列:["loss_actor", "loss_value", "pred_value", "target_value", "pred_value_max", "target_value_max"]

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.tensordict_module.actors import Actor, ValueOperator
>>> from torchrl.objectives.ddpg import DDPGLoss
>>> _ = torch.manual_seed(42)
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> actor = Actor(spec=spec, module=nn.Linear(n_obs, n_act))
>>> class ValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> value = ValueOperator(
...     module=module,
...     in_keys=["observation", "action"])
>>> loss = DDPGLoss(actor, value)
>>> loss_actor, loss_value, pred_value, target_value, pred_value_max, target_value_max = loss(
...     observation=torch.randn(n_obs),
...     action=spec.rand(),
...     next_done=torch.zeros(1, dtype=torch.bool),
...     next_terminated=torch.zeros(1, dtype=torch.bool),
...     next_observation=torch.randn(n_obs),
...     next_reward=torch.randn(1))
>>> loss_actor.backward()

输出键也可以使用 DDPGLoss.select_out_keys() 方法进行过滤。

示例

>>> loss.select_out_keys('loss_actor', 'loss_value')
>>> loss_actor, loss_value = loss(
...     observation=torch.randn(n_obs),
...     action=spec.rand(),
...     next_done=torch.zeros(1, dtype=torch.bool),
...     next_terminated=torch.zeros(1, dtype=torch.bool),
...     next_observation=torch.randn(n_obs),
...     next_reward=torch.randn(1))
>>> loss_actor.backward()
default_keys

别名:_AcceptedKeys

forward(tensordict: TensorDictBase = None) TensorDict[源代码]

根据从回放缓冲区采样的 tensordict 计算 DDPG 损失。

此函数还将写入一个 “td_error” 键,该键可用于优先级回放缓冲区为 tensordict 中的项分配

优先级。

参数:

tensordict (TensorDictBase) – 一个具有键 [“done”, “terminated”, “reward”] 以及 actor 和 value 网络 in_keys 的 tensordict。

返回:

包含 DDPG 损失的 2 个张量的元组。

make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[源代码]

值函数构造函数。

如果需要非默认值函数,必须使用此方法构建。

参数:
  • value_type (ValueEstimators) – 一个 ValueEstimators 枚举类型,指示要使用的价值函数。如果未提供,则将使用 default_value_estimator 属性中存储的默认值。生成的价值估计器类将注册在 self.value_type 中,以便将来进行细化。

  • **hyperparams – 用于价值函数的超参数。如果未提供,将使用 default_value_kwargs() 指示的值。

示例

>>> from torchrl.objectives import DQNLoss
>>> # initialize the DQN loss
>>> actor = torch.nn.Linear(3, 4)
>>> dqn_loss = DQNLoss(actor, action_space="one-hot")
>>> # updating the parameters of the default value estimator
>>> dqn_loss.make_value_estimator(gamma=0.9)
>>> dqn_loss.make_value_estimator(
...     ValueEstimators.TD1,
...     gamma=0.9)
>>> # if we want to change the gamma value
>>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源