DiscreteCQLLoss¶
- class torchrl.objectives.DiscreteCQLLoss(*args, **kwargs)[源代码]¶
TorchRL 实现离散 CQL 损失。
此类实现了离散保守 Q-learning (CQL) 损失函数,如论文“Conservative Q-Learning for Offline Reinforcement Learning”(https://arxiv.org/abs/2006.04779) 所示。
- 参数:
value_network (Union[QValueActor, nn.Module]) – 用于估计状态-动作值的 Q 值网络。
- 关键字参数:
loss_function (Optional[str]) – 用于计算预测 Q 值与目标 Q 值之间距离的距离函数。默认为
l2
。delay_value (bool) – 是否将目标 Q 值网络与用于数据收集的 Q 值网络分开。默认为
True
。gamma (
float
, optional) – 折扣因子。默认为None
。action_space – 环境的动作空间。如果为 None,则从值网络推断。默认为 None。
reduction (str, optional) – 指定应用于输出的归约:
"none"
|"mean"
|"sum"
。"none"
:不应用归约,"mean"
:输出的总和除以输出中的元素数量,"sum"
:对输出进行求和。默认:"mean"
。
示例
>>> from torchrl.modules import MLP, QValueActor >>> from torchrl.data import OneHot >>> from torchrl.objectives import DiscreteCQLLoss >>> n_obs, n_act = 4, 3 >>> value_net = MLP(in_features=n_obs, out_features=n_act) >>> spec = OneHot(n_act) >>> actor = QValueActor(value_net, in_keys=["observation"], action_space=spec) >>> loss = DiscreteCQLLoss(actor, action_space=spec) >>> batch = [10,] >>> data = TensorDict({ ... "observation": torch.randn(*batch, n_obs), ... "action": spec.rand(batch), ... ("next", "observation"): torch.randn(*batch, n_obs), ... ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool), ... ("next", "reward"): torch.randn(*batch, 1) ... }, batch) >>> loss(data) TensorDict( fields={ loss_cql: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), pred_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False), td_error: Tensor(shape=torch.Size([1]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([]), device=None, is_shared=False)
此类也兼容非 tensordict 的模块,并且可以在不依赖任何 tensordict 相关基元的情况下使用。在这种情况下,预期的关键字参数是:
["observation", "next_observation", "action", "next_reward", "next_done", "next_terminated"]
,并且返回单个损失值。示例
>>> from torchrl.objectives import DiscreteCQLLoss >>> from torchrl.data import OneHot >>> from torch import nn >>> import torch >>> n_obs = 3 >>> n_action = 4 >>> action_spec = OneHot(n_action) >>> value_network = nn.Linear(n_obs, n_action) # a simple value model >>> dcql_loss = DiscreteCQLLoss(value_network, action_space=action_spec) >>> # define data >>> observation = torch.randn(n_obs) >>> next_observation = torch.randn(n_obs) >>> action = action_spec.rand() >>> next_reward = torch.randn(1) >>> next_done = torch.zeros(1, dtype=torch.bool) >>> next_terminated = torch.zeros(1, dtype=torch.bool) >>> loss_val = dcql_loss( ... observation=observation, ... next_observation=next_observation, ... next_reward=next_reward, ... next_done=next_done, ... next_terminated=next_terminated, ... action=action)
- default_keys¶
别名:
_AcceptedKeys
- forward(tensordict: TensorDictBase = None) TensorDict [源代码]¶
给定从回放缓冲区采样的一个 tensordict,计算 (DQN) CQL 损失。
- 此函数还将写入一个 “td_error” 键,该键可用于优先级回放缓冲区为 tensordict 中的项分配
优先级。
- 参数:
tensordict (TensorDictBase) – 一个 tensordict,包含键 [“action”] 和值网络的 in_keys(观测值,“done”,“terminated”,“reward” 在一个“next” tensordict 中)。
- 返回:
一个包含 CQL 损失的张量。
- make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[源代码]¶
值函数构造函数。
如果需要非默认值函数,必须使用此方法构建。
- 参数:
value_type (ValueEstimators) – 一个
ValueEstimators
枚举类型,指示要使用哪个值函数。如果未提供,将使用存储在default_value_estimator
属性中的默认值。生成的价值估计器类将注册在self.value_type
中,以便将来进行改进。**hyperparams – 要用于值函数的超参数。如果未提供,将使用
default_value_kwargs()
中指定的值。
示例
>>> from torchrl.objectives import DQNLoss >>> # initialize the DQN loss >>> actor = torch.nn.Linear(3, 4) >>> dqn_loss = DQNLoss(actor, action_space="one-hot") >>> # updating the parameters of the default value estimator >>> dqn_loss.make_value_estimator(gamma=0.9) >>> dqn_loss.make_value_estimator( ... ValueEstimators.TD1, ... gamma=0.9) >>> # if we want to change the gamma value >>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)