快捷方式

REDQLoss

class torchrl.objectives.REDQLoss(*args, **kwargs)[源代码]

REDQ Loss 模块。

REDQ (RANDOMIZED ENSEMBLED DOUBLE Q-LEARNING: LEARNING FAST WITHOUT A MODEL https://openreview.net/pdf?id=AY8zfZm0tDd) 泛化了使用 Q 值函数集成来训练类似 SAC 的算法的思想。

参数:
  • actor_network (TensorDictModule) – 要训练的 actor

  • qvalue_network (TensorDictModule) –

    单个 Q 值网络或 Q 值网络列表。如果提供了一个 qvalue_network 的实例,它将被复制 num_qvalue_nets 次。如果传递了模块列表,它们的参数将被堆叠,除非它们共享相同的身份(在这种情况下,原始参数将被扩展)。

    警告

    当传入参数列表时,它 __不会__ 与策略参数进行比较,所有参数都将被视为独立的。

关键字参数:
  • num_qvalue_nets (int, optional) – 要训练的 Q 值网络数量。默认为 10

  • sub_sample_len (int, optional) – 用于评估下一个状态值的 Q 值网络子采样数量。默认为 2

  • loss_function (str, optional) – 用于 Q 值的损失函数。可以是 "smooth_l1", "l2", "l1" 之一。默认为 "smooth_l1"

  • alpha_init (float, optional) – 初始熵乘数。默认为 1.0

  • min_alpha (float, optional) – alpha 的最小值。默认为 0.1

  • max_alpha (float, optional) – alpha 的最大值。默认为 10.0

  • action_spec (TensorSpec, optional) – 动作张量规范。如果未提供且目标熵为 "auto",则将从 actor 中检索。

  • fixed_alpha (bool, optional) – alpha 是否应被训练以匹配目标熵。默认为 False

  • target_entropy (Union[str, Number], optional) – 随机策略的目标熵。默认为“auto”。

  • delay_qvalue (bool, optional) – 是否将目标 Q 值网络与用于数据收集的 Q 值网络分开。默认为 False

  • gSDE (bool, optional) – 了解 gSDE 是否被使用对于创建随机噪声变量是必要的。默认为 False

  • priority_key (str, optional) – [已弃用,请使用 .set_keys() 代替] 用于优先回放缓冲区写入优先级值的键。默认为 "td_error"

  • separate_losses (bool, optional) – 如果为 True,策略和评估器之间的共享参数将仅针对策略损失进行训练。默认为 False,即梯度会同时传播到策略和评估器的共享参数的损失。

  • reduction (str, optional) – 指定应用于输出的归约:"none" | "mean" | "sum""none":不应用归约,"mean":输出的总和除以输出中的元素数量,"sum":输出将被求和。默认为:"mean"

  • deactivate_vmap (bool, 可选) – 是否禁用 vmap 调用并用普通 for 循环替换它们。默认为 False

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.redq import REDQLoss
>>> from tensordict import TensorDict
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class ValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
...     module=module,
...     in_keys=['observation', 'action'])
>>> loss = REDQLoss(actor, qvalue)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> data = TensorDict({
...         "observation": torch.randn(*batch, n_obs),
...         "action": action,
...         ("next", "done"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "terminated"): torch.zeros(*batch, 1, dtype=torch.bool),
...         ("next", "reward"): torch.randn(*batch, 1),
...         ("next", "observation"): torch.randn(*batch, n_obs),
...     }, batch)
>>> loss(data)
TensorDict(
    fields={
        action_log_prob_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        entropy: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_alpha: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        loss_qvalue: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        next.state_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        state_action_value_actor: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        target_value: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此类也兼容非 tensordict 的模块,并且可以在不依赖任何 tensordict 相关基元的情况下使用。在这种情况下,预期的关键字参数为:["action", "next_reward", "next_done", "next_terminated"] + actor 和 qvalue 网络的 in_keys。返回值是一个按以下顺序排列的张量元组:["loss_actor", "loss_qvalue", "loss_alpha", "alpha", "entropy", "state_action_value_actor", "action_log_prob_actor", "next.state_value", "target_value",]

示例

>>> import torch
>>> from torch import nn
>>> from torchrl.data import Bounded
>>> from torchrl.modules.distributions import NormalParamExtractor, TanhNormal
>>> from torchrl.modules.tensordict_module.actors import ProbabilisticActor, ValueOperator
>>> from torchrl.modules.tensordict_module.common import SafeModule
>>> from torchrl.objectives.redq import REDQLoss
>>> n_act, n_obs = 4, 3
>>> spec = Bounded(-torch.ones(n_act), torch.ones(n_act), (n_act,))
>>> net = nn.Sequential(nn.Linear(n_obs, 2 * n_act), NormalParamExtractor())
>>> module = SafeModule(net, in_keys=["observation"], out_keys=["loc", "scale"])
>>> actor = ProbabilisticActor(
...     module=module,
...     in_keys=["loc", "scale"],
...     spec=spec,
...     distribution_class=TanhNormal)
>>> class ValueClass(nn.Module):
...     def __init__(self):
...         super().__init__()
...         self.linear = nn.Linear(n_obs + n_act, 1)
...     def forward(self, obs, act):
...         return self.linear(torch.cat([obs, act], -1))
>>> module = ValueClass()
>>> qvalue = ValueOperator(
...     module=module,
...     in_keys=['observation', 'action'])
>>> loss = REDQLoss(actor, qvalue)
>>> batch = [2, ]
>>> action = spec.rand(batch)
>>> # filter output keys to "loss_actor", and "loss_qvalue"
>>> _ = loss.select_out_keys("loss_actor", "loss_qvalue")
>>> loss_actor, loss_qvalue = loss(
...         observation=torch.randn(*batch, n_obs),
...         action=action,
...         next_done=torch.zeros(*batch, 1, dtype=torch.bool),
...         next_terminated=torch.zeros(*batch, 1, dtype=torch.bool),
...         next_reward=torch.randn(*batch, 1),
...         next_observation=torch.randn(*batch, n_obs))
>>> loss_actor.backward()
default_keys

别名:_AcceptedKeys

forward(tensordict: TensorDictBase = None) TensorDictBase[源代码]

它旨在读取一个输入的 TensorDict 并返回另一个包含名为“loss*”的损失键的 tensordict。

将损失分解为其组成部分可以被训练器用于在训练过程中记录各种损失值。输出 tensordict 中存在的其他标量也将被记录。

参数:

tensordict – 一个输入的 tensordict,包含计算损失所需的值。

返回:

一个没有批处理维度的新 tensordict,其中包含各种损失标量,这些标量将被命名为“loss*”。重要的是,损失必须以这个名称返回,因为它们将在反向传播之前被训练器读取。

make_value_estimator(value_type: Optional[ValueEstimators] = None, **hyperparams)[源代码]

值函数构造函数。

如果需要非默认值函数,必须使用此方法构建。

参数:
  • value_type (ValueEstimators) – 一个 ValueEstimators 枚举类型,指示要使用的值函数。如果未提供,将使用存储在 default_value_estimator 属性中的默认值。生成的价值估计器类将被注册到 self.value_type 中,以便将来进行改进。

  • **hyperparams – 用于值函数的超参数。如果未提供,将使用 default_value_kwargs() 指定的值。

示例

>>> from torchrl.objectives import DQNLoss
>>> # initialize the DQN loss
>>> actor = torch.nn.Linear(3, 4)
>>> dqn_loss = DQNLoss(actor, action_space="one-hot")
>>> # updating the parameters of the default value estimator
>>> dqn_loss.make_value_estimator(gamma=0.9)
>>> dqn_loss.make_value_estimator(
...     ValueEstimators.TD1,
...     gamma=0.9)
>>> # if we want to change the gamma value
>>> dqn_loss.make_value_estimator(dqn_loss.value_type, gamma=0.9)

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源