dense_stack_tds¶
- class tensordict.dense_stack_tds(td_list: Union[Sequence[TensorDictBase], LazyStackedTensorDict], dim: Optional[int] = None)¶
将一系列
TensorDictBase
对象(或一个LazyStackedTensorDict
)进行密集堆叠,前提是它们具有相同的结构。此函数接受一个
TensorDictBase
列表(直接传入或从LazyStackedTensorDict
中获取)。与调用 `torch.stack(td_list)`(这将返回一个LazyStackedTensorDict
)不同,此函数会展开输入列表的第一个元素,并将输入列表堆叠到该元素上。这仅在输入列表的所有元素都具有相同结构时才有效。TensorDictBase
返回的类型将与输入列表元素的类型相同。当需要堆叠的
TensorDictBase
对象中有LazyStackedTensorDict
,或者条目(或嵌套条目)中包含LazyStackedTensorDict
时,此函数非常有用。在这些情况下,调用 `torch.stack(td_list).to_tensordict()` 是不可行的。因此,此函数为密集堆叠提供的列表提供了一种替代方案。- 参数:
**td_list** (TensorDictBase 列表 或 LazyStackedTensorDict) – 要堆叠的 tds。
**dim** (int, 可选) – 要堆叠的维度。如果 td_list 是 LazyStackedTensorDict,则会自动检索。
示例
>>> import torch >>> from tensordict import TensorDict >>> from tensordict import dense_stack_tds >>> from tensordict.tensordict import assert_allclose_td >>> td0 = TensorDict({"a": torch.zeros(3)},[]) >>> td1 = TensorDict({"a": torch.zeros(4), "b": torch.zeros(2)},[]) >>> td_lazy = torch.stack([td0, td1], dim=0) >>> td_container = TensorDict({"lazy": td_lazy}, []) >>> td_container_clone = td_container.clone() >>> td_stack = torch.stack([td_container, td_container_clone], dim=0) >>> td_stack LazyStackedTensorDict( fields={ lazy: LazyStackedTensorDict( fields={ a: Tensor(shape=torch.Size([2, 2, -1]), device=cpu, dtype=torch.float32, is_shared=False)}, exclusive_fields={ }, batch_size=torch.Size([2, 2]), device=None, is_shared=False, stack_dim=0)}, exclusive_fields={ }, batch_size=torch.Size([2]), device=None, is_shared=False, stack_dim=0) >>> td_stack = dense_stack_tds(td_stack) # Automatically use the LazyStackedTensorDict stack_dim TensorDict( fields={ lazy: LazyStackedTensorDict( fields={ a: Tensor(shape=torch.Size([2, 2, -1]), device=cpu, dtype=torch.float32, is_shared=False)}, exclusive_fields={ 1 -> b: Tensor(shape=torch.Size([2, 2]), device=cpu, dtype=torch.float32, is_shared=False)}, batch_size=torch.Size([2, 2]), device=None, is_shared=False, stack_dim=1)}, batch_size=torch.Size([2]), device=None, is_shared=False) # Note that # (1) td_stack is now a TensorDict # (2) this has pushed the stack_dim of "lazy" (0 -> 1) # (3) this has revealed the exclusive keys. >>> assert_allclose_td(td_stack, dense_stack_tds([td_container, td_container_clone], dim=0)) # This shows it is the same to pass a list or a LazyStackedTensorDict