快捷方式

TensorDictModuleBase

class tensordict.nn.TensorDictModuleBase(*args, **kwargs)

TensorDict 模块的基类。

TensorDictModule 的子类通过 in_keysout_keys 键列表来区分,这些键列表指明了要读取哪些输入条目以及应该期望写入哪些输出条目。

forward 方法的输入/输出签名应始终遵循约定

>>> tensordict_out = module.forward(tensordict_in)

TensorDictModule 不同,TensorDictModuleBase 通常通过子类化使用:您可以将任何 Python 函数包装到 TensorDictModuleBase 子类中,只要子类的 forward 方法读取和写入 tensordict(或相关类型)实例即可。

in_keysout_keys 应正确指定。例如,out_keys 可以使用 select_out_keys() 动态缩减。

示例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModuleBase
>>> class Mod(TensorDictModuleBase):
...     in_keys = ["a"] # can also be specified during __init__
...     out_keys = ["b", "c"]
...     def forward(self, tensordict):
...         b = tensordict["a"].clone()
...         c = b + 1
...         return tensordict.replace({"b": b, "c": c})
>>> mod = Mod()
>>> td = mod(TensorDict(a=0))
>>> td["b"]
tensor(0)
>>> td["c"]
tensor(1)
>>> mod.select_out_keys("c")
>>> td = mod(TensorDict(a=0))
>>> td["c"]
tensor(1)
>>> assert "b" not in td
static is_tdmodule_compatible(module)

检查模块是否与 TensorDictModule API 兼容。

reset_out_keys()

out_keys 属性重置为其原始值。

返回: 相同的模块,但 out_keys 值已重置。

示例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> import torch
>>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"])
>>> mod.select_out_keys("d")
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> mod.reset_out_keys()
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
reset_parameters_recursive(parameters: Optional[TensorDictBase] = None) Optional[TensorDictBase]

递归地重置模块及其子模块的参数。

参数:

parameters (参数的 TensorDict, 可选) – 如果设置为 None,则模块将使用 self.parameters() 进行重置。否则,我们将就地重置 tensordict 中的参数。这对于参数本身不存储在模块中的函数式模块很有用。

返回:

新参数的 tensordict,仅当 parameters 不为 None 时返回。

示例

>>> from tensordict.nn import TensorDictModule
>>> from torch import nn
>>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU())
>>> old_param = net[0].weight.clone()
>>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork'])
>>> module.reset_parameters()
>>> (old_param == net[0].weight).any()
tensor(False)

此方法还支持函数式参数采样

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule
>>> from torch import nn
>>> net = nn.Sequential(nn.Linear(2,3), nn.ReLU())
>>> module = TensorDictModule(net, in_keys=['bork'], out_keys=['dork'])
>>> params = TensorDict.from_module(module)
>>> old_params = params.clone(recurse=True)
>>> module.reset_parameters(params)
>>> (old_params == params).any()
False
select_out_keys(*out_keys) TensorDictModuleBase

选择将在输出 tensordict 中找到的键。

当一个人想丢弃复杂图中的中间键,或者当这些键的存在可能触发意外行为时,这很有用。

原始 out_keys 仍然可以通过 module.out_keys_source 访问。

参数:

*out_keys (字符串序列字符串元组) – 应在输出 tensordict 中找到的 out_keys。

返回: 相同的模块,以就地修改方式返回,并更新了 out_keys

最简单的用法是与 TensorDictModule 一起使用

示例

>>> from tensordict import TensorDict
>>> from tensordict.nn import TensorDictModule, TensorDictSequential
>>> import torch
>>> mod = TensorDictModule(lambda x, y: (x+2, y+2), in_keys=["a", "b"], out_keys=["c", "d"])
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> mod.select_out_keys("d")
>>> td = TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, [])
>>> mod(td)
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

此功能也将适用于分派的参数: .. rubric:: 示例

>>> mod(torch.zeros(()), torch.ones(()))
tensor(2.)

此更改将就地进行(即返回相同的模块,并更新 out_keys 列表)。可以使用 TensorDictModuleBase.reset_out_keys() 方法还原。

示例

>>> mod.reset_out_keys()
>>> mod(TensorDict({"a": torch.zeros(()), "b": torch.ones(())}, []))
TensorDict(
    fields={
        a: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        b: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        c: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        d: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

这也将适用于其他类,例如 Sequential: .. rubric:: 示例

>>> from tensordict.nn import TensorDictSequential
>>> seq = TensorDictSequential(
...     TensorDictModule(lambda x: x+1, in_keys=["x"], out_keys=["y"]),
...     TensorDictModule(lambda x: x+1, in_keys=["y"], out_keys=["z"]),
... )
>>> td = TensorDict({"x": torch.zeros(())}, [])
>>> seq(td)
TensorDict(
    fields={
        x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        y: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)
>>> seq.select_out_keys("z")
>>> td = TensorDict({"x": torch.zeros(())}, [])
>>> seq(td)
TensorDict(
    fields={
        x: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False),
        z: Tensor(shape=torch.Size([]), device=cpu, dtype=torch.float32, is_shared=False)},
    batch_size=torch.Size([]),
    device=None,
    is_shared=False)

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源