complete_box_iou_loss¶
- torchvision.ops.complete_box_iou_loss(boxes1: Tensor, boxes2: Tensor, reduction: str = 'none', eps: float = 1e-07) Tensor [源代码]¶
梯度友好的 IoU 损失,具有额外的惩罚项,当框不重叠时,该惩罚项不为零。此损失函数考虑了重要的几何因素,例如重叠区域、归一化的中心点距离和纵横比。此损失是对称的,因此 boxes1 和 boxes2 参数可以互换。
两组框都应为
(x1, y1, x2, y2)
格式,其中0 <= x1 < x2
和0 <= y1 < y2
,并且两个框应具有相同的尺寸。- 参数:
boxes1 – (Tensor[N, 4] 或 Tensor[4]) 第一组框
boxes2 – (Tensor[N, 4] 或 Tensor[4]) 第二组框
reduction – (string, optional) 指定应用于输出的归约方式:
'none'
|'mean'
|'sum'
。'none'
:不对输出应用任何归约。'mean'
:对输出进行平均。'sum'
:对输出进行求和。 默认值:'none'
eps – (float): 防止除零的小数。 默认值: 1e-7
- 返回:
带有归约选项应用的损失张量。
- 返回类型:
张量
- 参考
Zhaohui Zheng 等人:Complete Intersection over Union Loss: https://arxiv.org/abs/1911.08287