• 文档 >
  • 模型和预训练权重
快捷方式

模型和预训练权重

The torchvision.models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection, video classification, and optical flow.

预训练权重的一般信息

TorchVision offers pre-trained weights for every provided architecture, using the PyTorch torch.hub. Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the TORCH_HOME environment variable. See torch.hub.load_state_dict_from_url() for details.

注意

The pre-trained models provided in this library may have their own licenses or terms and conditions derived from the dataset used for training. It is your responsibility to determine whether you have permission to use the models for your use case.

注意

Backward compatibility is guaranteed for loading a serialized state_dict to the model created using old PyTorch version. On the contrary, loading entire saved models or serialized ScriptModules (serialized using older versions of PyTorch) may not preserve the historic behaviour. Refer to the following documentation

初始化预训练模型

As of v0.13, TorchVision offers a new Multi-weight support API for loading different weights to the existing model builder methods

from torchvision.models import resnet50, ResNet50_Weights

# Old weights with accuracy 76.130%
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)

# New weights with accuracy 80.858%
resnet50(weights=ResNet50_Weights.IMAGENET1K_V2)

# Best available weights (currently alias for IMAGENET1K_V2)
# Note that these weights may change across versions
resnet50(weights=ResNet50_Weights.DEFAULT)

# Strings are also supported
resnet50(weights="IMAGENET1K_V2")

# No weights - random initialization
resnet50(weights=None)

Migrating to the new API is very straightforward. The following method calls between the 2 APIs are all equivalent

from torchvision.models import resnet50, ResNet50_Weights

# Using pretrained weights:
resnet50(weights=ResNet50_Weights.IMAGENET1K_V1)
resnet50(weights="IMAGENET1K_V1")
resnet50(pretrained=True)  # deprecated
resnet50(True)  # deprecated

# Using no weights:
resnet50(weights=None)
resnet50()
resnet50(pretrained=False)  # deprecated
resnet50(False)  # deprecated

Note that the pretrained parameter is now deprecated, using it will emit warnings and will be removed on v0.15.

使用预训练模型

Before using the pre-trained models, one must preprocess the image (resize with right resolution/interpolation, apply inference transforms, rescale the values etc). There is no standard way to do this as it depends on how a given model was trained. It can vary across model families, variants or even weight versions. Using the correct preprocessing method is critical and failing to do so may lead to decreased accuracy or incorrect outputs.

All the necessary information for the inference transforms of each pre-trained model is provided on its weights documentation. To simplify inference, TorchVision bundles the necessary preprocessing transforms into each model weight. These are accessible via the weight.transforms attribute

# Initialize the Weight Transforms
weights = ResNet50_Weights.DEFAULT
preprocess = weights.transforms()

# Apply it to the input image
img_transformed = preprocess(img)

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See train() or eval() for details.

# Initialize model
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)

# Set model to eval mode
model.eval()

列出和检索可用模型

As of v0.14, TorchVision offers a new mechanism which allows listing and retrieving models and weights by their names. Here are a few examples on how to use them

# List available models
all_models = list_models()
classification_models = list_models(module=torchvision.models)

# Initialize models
m1 = get_model("mobilenet_v3_large", weights=None)
m2 = get_model("quantized_mobilenet_v3_large", weights="DEFAULT")

# Fetch weights
weights = get_weight("MobileNet_V3_Large_QuantizedWeights.DEFAULT")
assert weights == MobileNet_V3_Large_QuantizedWeights.DEFAULT

weights_enum = get_model_weights("quantized_mobilenet_v3_large")
assert weights_enum == MobileNet_V3_Large_QuantizedWeights

weights_enum2 = get_model_weights(torchvision.models.quantization.mobilenet_v3_large)
assert weights_enum == weights_enum2

Here are the available public functions to retrieve models and their corresponding weights

get_model(name, **config)

Gets the model name and configuration and returns an instantiated model.

get_model_weights(name)

Returns the weights enum class associated to the given model.

get_weight(name)

Gets the weights enum value by its full name.

list_models([module, include, exclude])

Returns a list with the names of registered models.

使用 Hub 中的模型

Most pre-trained models can be accessed directly via PyTorch Hub without having TorchVision installed

import torch

# Option 1: passing weights param as string
model = torch.hub.load("pytorch/vision", "resnet50", weights="IMAGENET1K_V2")

# Option 2: passing weights param as enum
weights = torch.hub.load(
    "pytorch/vision",
    "get_weight",
    weights="ResNet50_Weights.IMAGENET1K_V2",
)
model = torch.hub.load("pytorch/vision", "resnet50", weights=weights)

You can also retrieve all the available weights of a specific model via PyTorch Hub by doing

import torch

weight_enum = torch.hub.load("pytorch/vision", "get_model_weights", name="resnet50")
print([weight for weight in weight_enum])

The only exception to the above are the detection models included on torchvision.models.detection. These models require TorchVision to be installed because they depend on custom C++ operators.

分类

The following classification models are available, with or without pre-trained weights


Here is an example of how to use the pre-trained image classification models

from torchvision.io import decode_image
from torchvision.models import resnet50, ResNet50_Weights

img = decode_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

# Step 1: Initialize model with the best available weights
weights = ResNet50_Weights.DEFAULT
model = resnet50(weights=weights)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score:.1f}%")

The classes of the pre-trained model outputs can be found at weights.meta["categories"].

所有可用分类权重的表格

Accuracies are reported on ImageNet-1K using single crops

Weight

Acc@1

Acc@5

Params

GFLOPS

Recipe

AlexNet_Weights.IMAGENET1K_V1

56.522

79.066

61.1M

0.71

链接

ConvNeXt_Base_Weights.IMAGENET1K_V1

84.062

96.87

88.6M

15.36

链接

ConvNeXt_Large_Weights.IMAGENET1K_V1

84.414

96.976

197.8M

34.36

链接

ConvNeXt_Small_Weights.IMAGENET1K_V1

83.616

96.65

50.2M

8.68

链接

ConvNeXt_Tiny_Weights.IMAGENET1K_V1

82.52

96.146

28.6M

4.46

链接

DenseNet121_Weights.IMAGENET1K_V1

74.434

91.972

8.0M

2.83

链接

DenseNet161_Weights.IMAGENET1K_V1

77.138

93.56

28.7M

7.73

链接

DenseNet169_Weights.IMAGENET1K_V1

75.6

92.806

14.1M

3.36

链接

DenseNet201_Weights.IMAGENET1K_V1

76.896

93.37

20.0M

4.29

链接

EfficientNet_B0_Weights.IMAGENET1K_V1

77.692

93.532

5.3M

0.39

链接

EfficientNet_B1_Weights.IMAGENET1K_V1

78.642

94.186

7.8M

0.69

链接

EfficientNet_B1_Weights.IMAGENET1K_V2

79.838

94.934

7.8M

0.69

链接

EfficientNet_B2_Weights.IMAGENET1K_V1

80.608

95.31

9.1M

1.09

链接

EfficientNet_B3_Weights.IMAGENET1K_V1

82.008

96.054

12.2M

1.83

链接

EfficientNet_B4_Weights.IMAGENET1K_V1

83.384

96.594

19.3M

4.39

链接

EfficientNet_B5_Weights.IMAGENET1K_V1

83.444

96.628

30.4M

10.27

链接

EfficientNet_B6_Weights.IMAGENET1K_V1

84.008

96.916

43.0M

19.07

链接

EfficientNet_B7_Weights.IMAGENET1K_V1

84.122

96.908

66.3M

37.75

链接

EfficientNet_V2_L_Weights.IMAGENET1K_V1

85.808

97.788

118.5M

56.08

链接

EfficientNet_V2_M_Weights.IMAGENET1K_V1

85.112

97.156

54.1M

24.58

链接

EfficientNet_V2_S_Weights.IMAGENET1K_V1

84.228

96.878

21.5M

8.37

链接

GoogLeNet_Weights.IMAGENET1K_V1

69.778

89.53

6.6M

1.5

链接

Inception_V3_Weights.IMAGENET1K_V1

77.294

93.45

27.2M

5.71

链接

MNASNet0_5_Weights.IMAGENET1K_V1

67.734

87.49

2.2M

0.1

链接

MNASNet0_75_Weights.IMAGENET1K_V1

71.18

90.496

3.2M

0.21

链接

MNASNet1_0_Weights.IMAGENET1K_V1

73.456

91.51

4.4M

0.31

链接

MNASNet1_3_Weights.IMAGENET1K_V1

76.506

93.522

6.3M

0.53

链接

MaxVit_T_Weights.IMAGENET1K_V1

83.7

96.722

30.9M

5.56

链接

MobileNet_V2_Weights.IMAGENET1K_V1

71.878

90.286

3.5M

0.3

链接

MobileNet_V2_Weights.IMAGENET1K_V2

72.154

90.822

3.5M

0.3

链接

MobileNet_V3_Large_Weights.IMAGENET1K_V1

74.042

91.34

5.5M

0.22

链接

MobileNet_V3_Large_Weights.IMAGENET1K_V2

75.274

92.566

5.5M

0.22

链接

MobileNet_V3_Small_Weights.IMAGENET1K_V1

67.668

87.402

2.5M

0.06

链接

RegNet_X_16GF_Weights.IMAGENET1K_V1

80.058

94.944

54.3M

15.94

链接

RegNet_X_16GF_Weights.IMAGENET1K_V2

82.716

96.196

54.3M

15.94

链接

RegNet_X_1_6GF_Weights.IMAGENET1K_V1

77.04

93.44

9.2M

1.6

链接

RegNet_X_1_6GF_Weights.IMAGENET1K_V2

79.668

94.922

9.2M

1.6

链接

RegNet_X_32GF_Weights.IMAGENET1K_V1

80.622

95.248

107.8M

31.74

链接

RegNet_X_32GF_Weights.IMAGENET1K_V2

83.014

96.288

107.8M

31.74

链接

RegNet_X_3_2GF_Weights.IMAGENET1K_V1

78.364

93.992

15.3M

3.18

链接

RegNet_X_3_2GF_Weights.IMAGENET1K_V2

81.196

95.43

15.3M

3.18

链接

RegNet_X_400MF_Weights.IMAGENET1K_V1

72.834

90.95

5.5M

0.41

链接

RegNet_X_400MF_Weights.IMAGENET1K_V2

74.864

92.322

5.5M

0.41

链接

RegNet_X_800MF_Weights.IMAGENET1K_V1

75.212

92.348

7.3M

0.8

链接

RegNet_X_800MF_Weights.IMAGENET1K_V2

77.522

93.826

7.3M

0.8

链接

RegNet_X_8GF_Weights.IMAGENET1K_V1

79.344

94.686

39.6M

8

链接

RegNet_X_8GF_Weights.IMAGENET1K_V2

81.682

95.678

39.6M

8

链接

RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_E2E_V1

88.228

98.682

644.8M

374.57

链接

RegNet_Y_128GF_Weights.IMAGENET1K_SWAG_LINEAR_V1

86.068

97.844

644.8M

127.52

链接

RegNet_Y_16GF_Weights.IMAGENET1K_V1

80.424

95.24

83.6M

15.91

链接

RegNet_Y_16GF_Weights.IMAGENET1K_V2

82.886

96.328

83.6M

15.91

链接

RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_E2E_V1

86.012

98.054

83.6M

46.73

链接

RegNet_Y_16GF_Weights.IMAGENET1K_SWAG_LINEAR_V1

83.976

97.244

83.6M

15.91

链接

RegNet_Y_1_6GF_Weights.IMAGENET1K_V1

77.95

93.966

11.2M

1.61

链接

RegNet_Y_1_6GF_Weights.IMAGENET1K_V2

80.876

95.444

11.2M

1.61

链接

RegNet_Y_32GF_Weights.IMAGENET1K_V1

80.878

95.34

145.0M

32.28

链接

RegNet_Y_32GF_Weights.IMAGENET1K_V2

83.368

96.498

145.0M

32.28

链接

RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_E2E_V1

86.838

98.362

145.0M

94.83

链接

RegNet_Y_32GF_Weights.IMAGENET1K_SWAG_LINEAR_V1

84.622

97.48

145.0M

32.28

链接

RegNet_Y_3_2GF_Weights.IMAGENET1K_V1

78.948

94.576

19.4M

3.18

链接

RegNet_Y_3_2GF_Weights.IMAGENET1K_V2

81.982

95.972

19.4M

3.18

链接

RegNet_Y_400MF_Weights.IMAGENET1K_V1

74.046

91.716

4.3M

0.4

链接

RegNet_Y_400MF_Weights.IMAGENET1K_V2

75.804

92.742

4.3M

0.4

链接

RegNet_Y_800MF_Weights.IMAGENET1K_V1

76.42

93.136

6.4M

0.83

链接

RegNet_Y_800MF_Weights.IMAGENET1K_V2

78.828

94.502

6.4M

0.83

链接

RegNet_Y_8GF_Weights.IMAGENET1K_V1

80.032

95.048

39.4M

8.47

链接

RegNet_Y_8GF_Weights.IMAGENET1K_V2

82.828

96.33

39.4M

8.47

链接

ResNeXt101_32X8D_Weights.IMAGENET1K_V1

79.312

94.526

88.8M

16.41

链接

ResNeXt101_32X8D_Weights.IMAGENET1K_V2

82.834

96.228

88.8M

16.41

链接

ResNeXt101_64X4D_Weights.IMAGENET1K_V1

83.246

96.454

83.5M

15.46

链接

ResNeXt50_32X4D_Weights.IMAGENET1K_V1

77.618

93.698

25.0M

4.23

链接

ResNeXt50_32X4D_Weights.IMAGENET1K_V2

81.198

95.34

25.0M

4.23

链接

ResNet101_Weights.IMAGENET1K_V1

77.374

93.546

44.5M

7.8

链接

ResNet101_Weights.IMAGENET1K_V2

81.886

95.78

44.5M

7.8

链接

ResNet152_Weights.IMAGENET1K_V1

78.312

94.046

60.2M

11.51

链接

ResNet152_Weights.IMAGENET1K_V2

82.284

96.002

60.2M

11.51

链接

ResNet18_Weights.IMAGENET1K_V1

69.758

89.078

11.7M

1.81

链接

ResNet34_Weights.IMAGENET1K_V1

73.314

91.42

21.8M

3.66

链接

ResNet50_Weights.IMAGENET1K_V1

76.13

92.862

25.6M

4.09

链接

ResNet50_Weights.IMAGENET1K_V2

80.858

95.434

25.6M

4.09

链接

ShuffleNet_V2_X0_5_Weights.IMAGENET1K_V1

60.552

81.746

1.4M

0.04

链接

ShuffleNet_V2_X1_0_Weights.IMAGENET1K_V1

69.362

88.316

2.3M

0.14

链接

ShuffleNet_V2_X1_5_Weights.IMAGENET1K_V1

72.996

91.086

3.5M

0.3

链接

ShuffleNet_V2_X2_0_Weights.IMAGENET1K_V1

76.23

93.006

7.4M

0.58

链接

SqueezeNet1_0_Weights.IMAGENET1K_V1

58.092

80.42

1.2M

0.82

链接

SqueezeNet1_1_Weights.IMAGENET1K_V1

58.178

80.624

1.2M

0.35

链接

Swin_B_Weights.IMAGENET1K_V1

83.582

96.64

87.8M

15.43

链接

Swin_S_Weights.IMAGENET1K_V1

83.196

96.36

49.6M

8.74

链接

Swin_T_Weights.IMAGENET1K_V1

81.474

95.776

28.3M

4.49

链接

Swin_V2_B_Weights.IMAGENET1K_V1

84.112

96.864

87.9M

20.32

链接

Swin_V2_S_Weights.IMAGENET1K_V1

83.712

96.816

49.7M

11.55

链接

Swin_V2_T_Weights.IMAGENET1K_V1

82.072

96.132

28.4M

5.94

链接

VGG11_BN_Weights.IMAGENET1K_V1

70.37

89.81

132.9M

7.61

链接

VGG11_Weights.IMAGENET1K_V1

69.02

88.628

132.9M

7.61

链接

VGG13_BN_Weights.IMAGENET1K_V1

71.586

90.374

133.1M

11.31

链接

VGG13_Weights.IMAGENET1K_V1

69.928

89.246

133.0M

11.31

链接

VGG16_BN_Weights.IMAGENET1K_V1

73.36

91.516

138.4M

15.47

链接

VGG16_Weights.IMAGENET1K_V1

71.592

90.382

138.4M

15.47

链接

VGG16_Weights.IMAGENET1K_FEATURES

nan

nan

138.4M

15.47

链接

VGG19_BN_Weights.IMAGENET1K_V1

74.218

91.842

143.7M

19.63

链接

VGG19_Weights.IMAGENET1K_V1

72.376

90.876

143.7M

19.63

链接

ViT_B_16_Weights.IMAGENET1K_V1

81.072

95.318

86.6M

17.56

链接

ViT_B_16_Weights.IMAGENET1K_SWAG_E2E_V1

85.304

97.65

86.9M

55.48

链接

ViT_B_16_Weights.IMAGENET1K_SWAG_LINEAR_V1

81.886

96.18

86.6M

17.56

链接

ViT_B_32_Weights.IMAGENET1K_V1

75.912

92.466

88.2M

4.41

链接

ViT_H_14_Weights.IMAGENET1K_SWAG_E2E_V1

88.552

98.694

633.5M

1016.72

链接

ViT_H_14_Weights.IMAGENET1K_SWAG_LINEAR_V1

85.708

97.73

632.0M

167.29

链接

ViT_L_16_Weights.IMAGENET1K_V1

79.662

94.638

304.3M

61.55

链接

ViT_L_16_Weights.IMAGENET1K_SWAG_E2E_V1

88.064

98.512

305.2M

361.99

链接

ViT_L_16_Weights.IMAGENET1K_SWAG_LINEAR_V1

85.146

97.422

304.3M

61.55

链接

ViT_L_32_Weights.IMAGENET1K_V1

76.972

93.07

306.5M

15.38

链接

Wide_ResNet101_2_Weights.IMAGENET1K_V1

78.848

94.284

126.9M

22.75

链接

Wide_ResNet101_2_Weights.IMAGENET1K_V2

82.51

96.02

126.9M

22.75

链接

Wide_ResNet50_2_Weights.IMAGENET1K_V1

78.468

94.086

68.9M

11.4

链接

Wide_ResNet50_2_Weights.IMAGENET1K_V2

81.602

95.758

68.9M

11.4

链接

量化模型

The following architectures provide support for INT8 quantized models, with or without pre-trained weights


Here is an example of how to use the pre-trained quantized image classification models

from torchvision.io import decode_image
from torchvision.models.quantization import resnet50, ResNet50_QuantizedWeights

img = decode_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

# Step 1: Initialize model with the best available weights
weights = ResNet50_QuantizedWeights.DEFAULT
model = resnet50(weights=weights, quantize=True)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
class_id = prediction.argmax().item()
score = prediction[class_id].item()
category_name = weights.meta["categories"][class_id]
print(f"{category_name}: {100 * score}%")

The classes of the pre-trained model outputs can be found at weights.meta["categories"].

所有可用量化分类权重的表格

Accuracies are reported on ImageNet-1K using single crops

Weight

Acc@1

Acc@5

Params

GIPS

Recipe

GoogLeNet_QuantizedWeights.IMAGENET1K_FBGEMM_V1

69.826

89.404

6.6M

1.5

链接

Inception_V3_QuantizedWeights.IMAGENET1K_FBGEMM_V1

77.176

93.354

27.2M

5.71

链接

MobileNet_V2_QuantizedWeights.IMAGENET1K_QNNPACK_V1

71.658

90.15

3.5M

0.3

链接

MobileNet_V3_Large_QuantizedWeights.IMAGENET1K_QNNPACK_V1

73.004

90.858

5.5M

0.22

链接

ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V1

78.986

94.48

88.8M

16.41

链接

ResNeXt101_32X8D_QuantizedWeights.IMAGENET1K_FBGEMM_V2

82.574

96.132

88.8M

16.41

链接

ResNeXt101_64X4D_QuantizedWeights.IMAGENET1K_FBGEMM_V1

82.898

96.326

83.5M

15.46

链接

ResNet18_QuantizedWeights.IMAGENET1K_FBGEMM_V1

69.494

88.882

11.7M

1.81

链接

ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1

75.92

92.814

25.6M

4.09

链接

ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2

80.282

94.976

25.6M

4.09

链接

ShuffleNet_V2_X0_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1

57.972

79.78

1.4M

0.04

链接

ShuffleNet_V2_X1_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1

68.36

87.582

2.3M

0.14

链接

ShuffleNet_V2_X1_5_QuantizedWeights.IMAGENET1K_FBGEMM_V1

72.052

90.7

3.5M

0.3

链接

ShuffleNet_V2_X2_0_QuantizedWeights.IMAGENET1K_FBGEMM_V1

75.354

92.488

7.4M

0.58

链接

语义分割

警告

The segmentation module is in Beta stage, and backward compatibility is not guaranteed.

The following semantic segmentation models are available, with or without pre-trained weights


Here is an example of how to use the pre-trained semantic segmentation models

from torchvision.io.image import decode_image
from torchvision.models.segmentation import fcn_resnet50, FCN_ResNet50_Weights
from torchvision.transforms.functional import to_pil_image

img = decode_image("gallery/assets/dog1.jpg")

# Step 1: Initialize model with the best available weights
weights = FCN_ResNet50_Weights.DEFAULT
model = fcn_resnet50(weights=weights)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(img).unsqueeze(0)

# Step 4: Use the model and visualize the prediction
prediction = model(batch)["out"]
normalized_masks = prediction.softmax(dim=1)
class_to_idx = {cls: idx for (idx, cls) in enumerate(weights.meta["categories"])}
mask = normalized_masks[0, class_to_idx["dog"]]
to_pil_image(mask).show()

The classes of the pre-trained model outputs can be found at weights.meta["categories"]. The output format of the models is illustrated in Semantic segmentation models.

所有可用语义分割权重的表格

All models are evaluated a subset of COCO val2017, on the 20 categories that are present in the Pascal VOC dataset

Weight

Mean IoU

pixelwise Acc

Params

GFLOPS

Recipe

DeepLabV3_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1

60.3

91.2

11.0M

10.45

链接

DeepLabV3_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1

67.4

92.4

61.0M

258.74

链接

DeepLabV3_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1

66.4

92.4

42.0M

178.72

链接

FCN_ResNet101_Weights.COCO_WITH_VOC_LABELS_V1

63.7

91.9

54.3M

232.74

链接

FCN_ResNet50_Weights.COCO_WITH_VOC_LABELS_V1

60.5

91.4

35.3M

152.72

链接

LRASPP_MobileNet_V3_Large_Weights.COCO_WITH_VOC_LABELS_V1

57.9

91.2

3.2M

2.09

链接

目标检测、实例分割和人员关键点检测

The pre-trained models for detection, instance segmentation and keypoint detection are initialized with the classification models in torchvision. The models expect a list of Tensor[C, H, W]. Check the constructor of the models for more information.

警告

检测模块处于 Beta 阶段,不保证向后兼容。

目标检测

The following object detection models are available, with or without pre-trained weights


Here is an example of how to use the pre-trained object detection models

from torchvision.io.image import decode_image
from torchvision.models.detection import fasterrcnn_resnet50_fpn_v2, FasterRCNN_ResNet50_FPN_V2_Weights
from torchvision.utils import draw_bounding_boxes
from torchvision.transforms.functional import to_pil_image

img = decode_image("test/assets/encode_jpeg/grace_hopper_517x606.jpg")

# Step 1: Initialize model with the best available weights
weights = FasterRCNN_ResNet50_FPN_V2_Weights.DEFAULT
model = fasterrcnn_resnet50_fpn_v2(weights=weights, box_score_thresh=0.9)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = [preprocess(img)]

# Step 4: Use the model and visualize the prediction
prediction = model(batch)[0]
labels = [weights.meta["categories"][i] for i in prediction["labels"]]
box = draw_bounding_boxes(img, boxes=prediction["boxes"],
                          labels=labels,
                          colors="red",
                          width=4, font_size=30)
im = to_pil_image(box.detach())
im.show()

The classes of the pre-trained model outputs can be found at weights.meta["categories"]. For details on how to plot the bounding boxes of the models, you may refer to Instance segmentation models.

所有可用目标检测权重的表格

Box MAPs are reported on COCO val2017

Weight

Box MAP

Params

GFLOPS

Recipe

FCOS_ResNet50_FPN_Weights.COCO_V1

39.2

32.3M

128.21

链接

FasterRCNN_MobileNet_V3_Large_320_FPN_Weights.COCO_V1

22.8

19.4M

0.72

链接

FasterRCNN_MobileNet_V3_Large_FPN_Weights.COCO_V1

32.8

19.4M

4.49

链接

FasterRCNN_ResNet50_FPN_V2_Weights.COCO_V1

46.7

43.7M

280.37

链接

FasterRCNN_ResNet50_FPN_Weights.COCO_V1

37

41.8M

134.38

链接

RetinaNet_ResNet50_FPN_V2_Weights.COCO_V1

41.5

38.2M

152.24

链接

RetinaNet_ResNet50_FPN_Weights.COCO_V1

36.4

34.0M

151.54

链接

SSD300_VGG16_Weights.COCO_V1

25.1

35.6M

34.86

链接

SSDLite320_MobileNet_V3_Large_Weights.COCO_V1

21.3

3.4M

0.58

链接

实例分割

The following instance segmentation models are available, with or without pre-trained weights


For details on how to plot the masks of the models, you may refer to Instance segmentation models.

所有可用实例分割权重的表格

Box and Mask MAPs are reported on COCO val2017

Weight

Box MAP

Mask MAP

Params

GFLOPS

Recipe

MaskRCNN_ResNet50_FPN_V2_Weights.COCO_V1

47.4

41.8

46.4M

333.58

链接

MaskRCNN_ResNet50_FPN_Weights.COCO_V1

37.9

34.6

44.4M

134.38

链接

关键点检测

The following person keypoint detection models are available, with or without pre-trained weights


The classes of the pre-trained model outputs can be found at weights.meta["keypoint_names"]. For details on how to plot the bounding boxes of the models, you may refer to Visualizing keypoints.

所有可用关键点检测权重的表格

Box and Keypoint MAPs are reported on COCO val2017

Weight

Box MAP

Keypoint MAP

Params

GFLOPS

Recipe

KeypointRCNN_ResNet50_FPN_Weights.COCO_LEGACY

50.6

61.1

59.1M

133.92

链接

KeypointRCNN_ResNet50_FPN_Weights.COCO_V1

54.6

65

59.1M

137.42

链接

视频分类

警告

The video module is in Beta stage, and backward compatibility is not guaranteed.

The following video classification models are available, with or without pre-trained weights


Here is an example of how to use the pre-trained video classification models

from torchvision.io.video import read_video
from torchvision.models.video import r3d_18, R3D_18_Weights

vid, _, _ = read_video("test/assets/videos/v_SoccerJuggling_g23_c01.avi", output_format="TCHW")
vid = vid[:32]  # optionally shorten duration

# Step 1: Initialize model with the best available weights
weights = R3D_18_Weights.DEFAULT
model = r3d_18(weights=weights)
model.eval()

# Step 2: Initialize the inference transforms
preprocess = weights.transforms()

# Step 3: Apply inference preprocessing transforms
batch = preprocess(vid).unsqueeze(0)

# Step 4: Use the model and print the predicted category
prediction = model(batch).squeeze(0).softmax(0)
label = prediction.argmax().item()
score = prediction[label].item()
category_name = weights.meta["categories"][label]
print(f"{category_name}: {100 * score}%")

The classes of the pre-trained model outputs can be found at weights.meta["categories"].

所有可用视频分类权重的表格

Accuracies are reported on Kinetics-400 using single crops for clip length 16

Weight

Acc@1

Acc@5

Params

GFLOPS

Recipe

MC3_18_Weights.KINETICS400_V1

63.96

84.13

11.7M

43.34

链接

MViT_V1_B_Weights.KINETICS400_V1

78.477

93.582

36.6M

70.6

链接

MViT_V2_S_Weights.KINETICS400_V1

80.757

94.665

34.5M

64.22

链接

R2Plus1D_18_Weights.KINETICS400_V1

67.463

86.175

31.5M

40.52

链接

R3D_18_Weights.KINETICS400_V1

63.2

83.479

33.4M

40.7

链接

S3D_Weights.KINETICS400_V1

68.368

88.05

8.3M

17.98

链接

Swin3D_B_Weights.KINETICS400_V1

79.427

94.386

88.0M

140.67

链接

Swin3D_B_Weights.KINETICS400_IMAGENET22K_V1

81.643

95.574

88.0M

140.67

链接

Swin3D_S_Weights.KINETICS400_V1

79.521

94.158

49.8M

82.84

链接

Swin3D_T_Weights.KINETICS400_V1

77.715

93.519

28.2M

43.88

链接

光流

The following Optical Flow models are available, with or without pre-trained

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源