快捷方式

RandomResize

class torchvision.transforms.v2.RandomResize(min_size: int, max_size: int, interpolation: Union[InterpolationMode, int] = InterpolationMode.BILINEAR, antialias: Optional[bool] = True)[源代码]

随机调整输入大小。

此变换可与 RandomCrop 一起用作图像分割任务的模型训练数据增强。

输出空间尺寸将从 [min_size, max_size] 区间随机采样。

size = uniform_sample(min_size, max_size)
output_width = size
output_height = size

如果输入是 torch.TensorTVTensor(例如 ImageVideoBoundingBoxes 等),它可以具有任意数量的前导批次维度。例如,图像可以具有 [..., C, H, W] 形状。边界框可以具有 [..., 4] 形状。

参数:
  • min_size (int) – 随机采样的最小输出尺寸。

  • max_size (int) – 随机采样的最大输出尺寸。

  • interpolation (InterpolationMode, optional) – 由 torchvision.transforms.InterpolationMode 定义的所需插值枚举。默认为 InterpolationMode.BILINEAR。如果输入是 Tensor,仅支持 InterpolationMode.NEARESTInterpolationMode.NEAREST_EXACTInterpolationMode.BILINEARInterpolationMode.BICUBIC。也可以接受相应的 Pillow 整数常量,例如 PIL.Image.BILINEAR

  • antialias (bool, 可选) –

    是否应用抗锯齿。它仅影响双线性或三次插值模式的张量,否则将被忽略:对于 PIL 图像,双线性或三次插值模式始终应用抗锯齿;对于其他模式(PIL 图像和张量),抗锯齿没有意义,该参数将被忽略。可能的值为:

    • True (默认):将对双线性或双三次模式应用抗锯齿。其他模式不受影响。这可能是您想要使用的。

    • False:将不对任何模式下的张量应用抗锯齿。PIL 图像在双线性或双三次模式下仍然进行抗锯齿处理,因为 PIL 不支持无抗锯齿。

    • None:对于张量等同于 False,对于 PIL 图像等同于 True。此值出于历史原因而存在,除非您真正知道自己在做什么,否则可能不希望使用它。

    默认值在 v0.17 中从 None 更改为 True,以使 PIL 和 Tensor 后端保持一致。

make_params(flat_inputs: list[Any]) dict[str, Any][源代码]

用于覆盖自定义变换的方法。

请参阅 如何编写自己的 v2 变换

transform(inpt: Any, params: dict[str, Any]) Any[源代码]

用于覆盖自定义变换的方法。

请参阅 如何编写自己的 v2 变换

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源