快捷方式

resnet50

torchvision.models.quantization.resnet50(*, weights: Optional[Union[ResNet50_QuantizedWeights, ResNet50_Weights]] = None, progress: bool = True, quantize: bool = False, **kwargs: Any) QuantizableResNet[source]

来自 Deep Residual Learning for Image Recognition 的 ResNet-50 模型

注意

请注意,quantize = True 将返回一个 8 位权重的量化模型。量化模型仅支持推理并在 CPU 上运行。尚未支持 GPU 推理。

参数:
  • weights (ResNet50_QuantizedWeightsResNet50_Weights,可选) – 模型的预训练权重。有关更多详细信息和可能的值,请参阅下方的 ResNet50_QuantizedWeights。默认情况下,不使用预训练权重。

  • progress (bool, optional) – 如果为 True,则在 stderr 上显示下载进度条。默认为 True。

  • quantize (bool, optional) – 如果为 True,则返回模型的量化版本。默认为 False。

  • **kwargs – 传递给 torchvision.models.quantization.QuantizableResNet 基类的参数。有关此类更多详细信息,请参阅 源代码

class torchvision.models.quantization.ResNet50_QuantizedWeights(value)[source]

上面的模型构建器接受以下值作为 weights 参数。ResNet50_QuantizedWeights.DEFAULT 等同于 ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2。您也可以使用字符串,例如 weights='DEFAULT'weights='IMAGENET1K_FBGEMM_V1'

ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1:

这些权重是通过对下面列出的未量化权重进行后期训练量化(eager 模式)生成的。

acc@1 (在 ImageNet-1K 上)

75.92

acc@5 (在 ImageNet-1K 上)

92.814

min_size

height=1, width=1

类别

丁鲱、金鱼、大白鲨、... (省略 997 个)

backend

fbgemm

方案

链接

参数数量

25557032

unquantized

ResNet50_Weights.IMAGENET1K_V1

GIPS

4.09

文件大小

24.8 MB

推理变换可在 ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V1.transforms 处获得,并执行以下预处理操作:接受 PIL.Image、批处理的 (B, C, H, W) 和单个 (C, H, W) 图像 torch.Tensor 对象。图像将使用 interpolation=InterpolationMode.BILINEAR 调整大小为 resize_size=[256],然后进行中心裁剪 crop_size=[224]。最后,首先将值重新缩放到 [0.0, 1.0],然后使用 mean=[0.485, 0.456, 0.406]std=[0.229, 0.224, 0.225] 进行归一化。

ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2:

这些权重是通过对下面列出的未量化权重进行后期训练量化(eager 模式)生成的。也可用作 ResNet50_QuantizedWeights.DEFAULT

acc@1 (在 ImageNet-1K 上)

80.282

acc@5 (在 ImageNet-1K 上)

94.976

min_size

height=1, width=1

类别

丁鲱、金鱼、大白鲨、... (省略 997 个)

backend

fbgemm

方案

链接

参数数量

25557032

unquantized

ResNet50_Weights.IMAGENET1K_V2

GIPS

4.09

文件大小

25.0 MB

推理变换可在 ResNet50_QuantizedWeights.IMAGENET1K_FBGEMM_V2.transforms 处获得,并执行以下预处理操作:接受 PIL.Image、批处理的 (B, C, H, W) 和单个 (C, H, W) 图像 torch.Tensor 对象。图像将使用 interpolation=InterpolationMode.BILINEAR 调整大小为 resize_size=[232],然后进行中心裁剪 crop_size=[224]。最后,首先将值重新缩放到 [0.0, 1.0],然后使用 mean=[0.485, 0.456, 0.406]std=[0.229, 0.224, 0.225] 进行归一化。

class torchvision.models.ResNet50_Weights(value)[source]

上面的模型构建器接受以下值作为 weights 参数。ResNet50_Weights.DEFAULT 等同于 ResNet50_Weights.IMAGENET1K_V2。您也可以使用字符串,例如 weights='DEFAULT'weights='IMAGENET1K_V1'

ResNet50_Weights.IMAGENET1K_V1:

这些权重通过简单的训练配方,非常接近论文的结果。

acc@1 (在 ImageNet-1K 上)

76.13

acc@5 (在 ImageNet-1K 上)

92.862

min_size

height=1, width=1

类别

丁鲱、金鱼、大白鲨、... (省略 997 个)

参数数量

25557032

方案

链接

GFLOPS

4.09

文件大小

97.8 MB

推理变换可在 ResNet50_Weights.IMAGENET1K_V1.transforms 处获得,并执行以下预处理操作:接受 PIL.Image、批处理的 (B, C, H, W) 和单个 (C, H, W) 图像 torch.Tensor 对象。图像将使用 interpolation=InterpolationMode.BILINEAR 调整大小为 resize_size=[256],然后进行中心裁剪 crop_size=[224]。最后,首先将值重新缩放到 [0.0, 1.0],然后使用 mean=[0.485, 0.456, 0.406]std=[0.229, 0.224, 0.225] 进行归一化。

ResNet50_Weights.IMAGENET1K_V2:

这些权重通过使用 TorchVision 的 最新训练配方 改进了原始论文的结果。也可用作 ResNet50_Weights.DEFAULT

acc@1 (在 ImageNet-1K 上)

80.858

acc@5 (在 ImageNet-1K 上)

95.434

min_size

height=1, width=1

类别

丁鲱、金鱼、大白鲨、... (省略 997 个)

参数数量

25557032

方案

链接

GFLOPS

4.09

文件大小

97.8 MB

推理变换可在 ResNet50_Weights.IMAGENET1K_V2.transforms 处获得,并执行以下预处理操作:接受 PIL.Image、批处理的 (B, C, H, W) 和单个 (C, H, W) 图像 torch.Tensor 对象。图像将使用 interpolation=InterpolationMode.BILINEAR 调整大小为 resize_size=[232],然后进行中心裁剪 crop_size=[224]。最后,首先将值重新缩放到 [0.0, 1.0],然后使用 mean=[0.485, 0.456, 0.406]std=[0.229, 0.224, 0.225] 进行归一化。

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源