MinariExperienceReplay¶
- class torchrl.data.datasets.MinariExperienceReplay(dataset_id, batch_size: int, *, root: str | Path | None = None, download: bool = True, sampler: Sampler | None = None, writer: Writer | None = None, collate_fn: Callable | None = None, pin_memory: bool = False, prefetch: int | None = None, transform: torchrl.envs.Transform | None = None, split_trajs: bool = False)[源代码]¶
Minari 体验回放数据集。
在 Minari 网站上了解更多信息: https://minari.farama.org/
数据格式遵循 TED 约定。
- 参数:
dataset_id (str) – 要下载的数据集。必须是 MinariExperienceReplay.available_datasets 中的一个。
batch_size (int) – 采样时使用的批处理大小。如果需要,可以通过 data.sample(batch_size) 覆盖。
- 关键字参数:
root (Path 或 str, 可选) – Minari 数据集根目录。实际的数据集内存映射文件将保存在 <root>/<dataset_id> 下。如果未提供,则默认为 ~/.cache/torchrl/atari。minari`。
download (bool 或 str, 可选) – 如果找不到数据集,是否应下载。默认为
True
。download 也可以设置为"force"
,在这种情况下,将覆盖下载的数据。sampler (Sampler, 可选) – 要使用的采样器。如果未提供,将使用默认的 RandomSampler()。
writer (Writer, 可选) – 要使用的写入器。如果未提供,将使用默认的
ImmutableDatasetWriter
。collate_fn (callable, 可选) – 将样本列表合并以形成 Tensor(s)/输出的 mini-batch。在从 map 风格的数据集进行批处理加载时使用。
pin_memory (bool) – 是否应对 rb 样本调用 pin_memory()。
prefetch (int, 可选) – 使用多线程预取的下一个批次数。
transform (Transform, 可选) – 调用 sample() 时要执行的转换。要链接转换,请使用
Compose
类。split_trajs (bool, 可选) – 如果为
True
,则轨迹将沿第一个维度分割并填充以具有匹配的形状。要分割轨迹,将使用"done"
信号,该信号通过done = truncated | terminated
恢复。换句话说,假定任何truncated
或terminated
信号都等同于轨迹的结束。默认为False
。
- 变量:
available_datasets – 可接受下载条目的列表。
注意
文本数据目前已从包装的数据集中丢弃,因为没有 PyTorch 原生方法来表示文本数据。如果需要此功能,请在 TorchRL 的 GitHub 存储库上发帖。
示例
>>> from torchrl.data.datasets.minari_data import MinariExperienceReplay >>> data = MinariExperienceReplay("door-human-v1", batch_size=32, download="force") >>> for sample in data: ... torchrl_logger.info(sample) ... break TensorDict( fields={ action: Tensor(shape=torch.Size([32, 28]), device=cpu, dtype=torch.float32, is_shared=False), index: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.int64, is_shared=False), info: TensorDict( fields={ success: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False), next: TensorDict( fields={ done: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False), info: TensorDict( fields={ success: Tensor(shape=torch.Size([32]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False), observation: Tensor(shape=torch.Size([32, 39]), device=cpu, dtype=torch.float64, is_shared=False), reward: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.float64, is_shared=False), state: TensorDict( fields={ door_body_pos: Tensor(shape=torch.Size([32, 3]), device=cpu, dtype=torch.float64, is_shared=False), qpos: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False), qvel: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False), terminated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False), truncated: Tensor(shape=torch.Size([32, 1]), device=cpu, dtype=torch.bool, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False), observation: Tensor(shape=torch.Size([32, 39]), device=cpu, dtype=torch.float64, is_shared=False), state: TensorDict( fields={ door_body_pos: Tensor(shape=torch.Size([32, 3]), device=cpu, dtype=torch.float64, is_shared=False), qpos: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False), qvel: Tensor(shape=torch.Size([32, 30]), device=cpu, dtype=torch.float64, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False)}, batch_size=torch.Size([32]), device=cpu, is_shared=False)
- add(data: TensorDictBase) int ¶
将单个元素添加到重放缓冲区。
- 参数:
data (Any) – 要添加到重放缓冲区的数据
- 返回:
数据在重放缓冲区中的索引。
- append_transform(transform: Transform, *, invert: bool = False) ReplayBuffer ¶
将变换附加到末尾。
调用 sample 时按顺序应用变换。
- 参数:
transform (Transform) – 要附加的变换
- 关键字参数:
invert (bool, 可选) – 如果为
True
,则在写入时调用转换的 forward 方法,在读取时调用 inverse 方法。默认为False
。
示例
>>> rb = ReplayBuffer(storage=LazyMemmapStorage(10), batch_size=4) >>> data = TensorDict({"a": torch.zeros(10)}, [10]) >>> def t(data): ... data += 1 ... return data >>> rb.append_transform(t, invert=True) >>> rb.extend(data) >>> assert (data == 1).all()
- classmethod as_remote(remote_config=None)¶
创建一个远程 ray 类的实例。
- 参数:
cls (Python Class) – 要远程实例化的类。
remote_config (dict) – 为该类保留的 CPU 核心数量。默认为 torchrl.collectors.distributed.ray.DEFAULT_REMOTE_CLASS_CONFIG。
- 返回:
一个创建 ray 远程类实例的函数。
- property batch_size¶
重放缓冲区的批次大小。
批处理大小可以通过在
sample()
方法中设置 batch_size 参数来覆盖。它定义了
sample()
返回的样本数量,以及ReplayBuffer
迭代器生成的样本数量。
- property data_path: Path¶
数据集路径,包括分割。
- property data_path_root: Path¶
数据集根目录路径。
- delete()¶
从磁盘删除数据集存储。
- dumps(path)¶
将重放缓冲区保存到指定路径的磁盘上。
- 参数:
path (Path 或 str) – 保存重放缓冲区的路径。
示例
>>> import tempfile >>> import tqdm >>> from torchrl.data import LazyMemmapStorage, TensorDictReplayBuffer >>> from torchrl.data.replay_buffers.samplers import PrioritizedSampler, RandomSampler >>> import torch >>> from tensordict import TensorDict >>> # Build and populate the replay buffer >>> S = 1_000_000 >>> sampler = PrioritizedSampler(S, 1.1, 1.0) >>> # sampler = RandomSampler() >>> storage = LazyMemmapStorage(S) >>> rb = TensorDictReplayBuffer(storage=storage, sampler=sampler) >>> >>> for _ in tqdm.tqdm(range(100)): ... td = TensorDict({"obs": torch.randn(100, 3, 4), "next": {"obs": torch.randn(100, 3, 4)}, "td_error": torch.rand(100)}, [100]) ... rb.extend(td) ... sample = rb.sample(32) ... rb.update_tensordict_priority(sample) >>> # save and load the buffer >>> with tempfile.TemporaryDirectory() as tmpdir: ... rb.dumps(tmpdir) ... ... sampler = PrioritizedSampler(S, 1.1, 1.0) ... # sampler = RandomSampler() ... storage = LazyMemmapStorage(S) ... rb_load = TensorDictReplayBuffer(storage=storage, sampler=sampler) ... rb_load.loads(tmpdir) ... assert len(rb) == len(rb_load)
- empty(empty_write_count: bool = True)¶
清空重放缓冲区并将游标重置为 0。
- 参数:
empty_write_count (bool, optional) – 是否清空 write_count 属性。默认为 True。
- extend(tensordicts: TensorDictBase, *, update_priority: bool | None = None) torch.Tensor ¶
使用数据批次扩展重放缓冲区。
- 参数:
tensordicts (TensorDictBase) – 用于扩展重放缓冲区的数据。
- 关键字参数:
update_priority (bool, optional) – 是否更新数据的优先级。默认为 True。
- 返回:
已添加到重放缓冲区的数据的索引。
- insert_transform(index: int, transform: Transform, *, invert: bool = False) ReplayBuffer ¶
插入变换。
调用 sample 时按顺序执行变换。
- 参数:
index (int) – 插入变换的位置。
transform (Transform) – 要附加的变换
- 关键字参数:
invert (bool, 可选) – 如果为
True
,则在写入时调用转换的 forward 方法,在读取时调用 inverse 方法。默认为False
。
- loads(path)¶
在给定路径加载重放缓冲区状态。
缓冲区应具有匹配的组件,并使用
dumps()
保存。- 参数:
path (Path 或 str) – 重放缓冲区保存的路径。
有关更多信息,请参见
dumps()
。
- next()¶
返回重放缓冲区的下一个项。
此方法用于在 __iter__ 不可用的情况下迭代重放缓冲区,例如
RayReplayBuffer
。
- preprocess(fn: Callable[[TensorDictBase], TensorDictBase], dim: int = 0, num_workers: int | None = None, *, chunksize: int | None = None, num_chunks: int | None = None, pool: mp.Pool | None = None, generator: torch.Generator | None = None, max_tasks_per_child: int | None = None, worker_threads: int = 1, index_with_generator: bool = False, pbar: bool = False, mp_start_method: str | None = None, num_frames: int | None = None, dest: str | Path) TensorStorage ¶
预处理数据集并返回一个包含格式化数据的新存储。
数据转换必须是单位化的(作用于数据集的单个样本)。
Args 和 Keyword Args 会转发给
map()
。数据集随后可以使用
delete()
删除。- 关键字参数:
dest (path 或 等价物) – 新数据集位置的路径。
num_frames (int, 可选) – 如果提供,则仅转换前 num_frames 帧。这对于调试转换很有用。
返回:一个将在
ReplayBuffer
实例中使用的新的存储。示例
>>> from torchrl.data.datasets import MinariExperienceReplay >>> >>> data = MinariExperienceReplay( ... list(MinariExperienceReplay.available_datasets)[0], ... batch_size=32 ... ) >>> print(data) MinariExperienceReplay( storages=TensorStorage(TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), info: TensorDict( fields={ distance_from_origin: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), forward_reward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), qpos: MemoryMappedTensor(shape=torch.Size([1000000, 15]), device=cpu, dtype=torch.float64, is_shared=True), qvel: MemoryMappedTensor(shape=torch.Size([1000000, 14]), device=cpu, dtype=torch.float64, is_shared=True), reward_ctrl: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_forward: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), reward_survive: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), success: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.bool, is_shared=True), x_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), x_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_position: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True), y_velocity: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), observation: TensorDict( fields={ achieved_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), desired_goal: MemoryMappedTensor(shape=torch.Size([1000000, 2]), device=cpu, dtype=torch.float64, is_shared=True), observation: MemoryMappedTensor(shape=torch.Size([1000000, 27]), device=cpu, dtype=torch.float64, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)), samplers=RandomSampler, writers=ImmutableDatasetWriter(), batch_size=32, transform=Compose( ), collate_fn=<function _collate_id at 0x120e21dc0>) >>> from torchrl.envs import CatTensors, Compose >>> from tempfile import TemporaryDirectory >>> >>> cat_tensors = CatTensors( ... in_keys=[("observation", "observation"), ("observation", "achieved_goal"), ... ("observation", "desired_goal")], ... out_key="obs" ... ) >>> cat_next_tensors = CatTensors( ... in_keys=[("next", "observation", "observation"), ... ("next", "observation", "achieved_goal"), ... ("next", "observation", "desired_goal")], ... out_key=("next", "obs") ... ) >>> t = Compose(cat_tensors, cat_next_tensors) >>> >>> def func(td): ... td = td.select( ... "action", ... "episode", ... ("next", "done"), ... ("next", "observation"), ... ("next", "reward"), ... ("next", "terminated"), ... ("next", "truncated"), ... "observation" ... ) ... td = t(td) ... return td >>> with TemporaryDirectory() as tmpdir: ... new_storage = data.preprocess(func, num_workers=4, pbar=True, mp_start_method="fork", dest=tmpdir) ... rb = ReplayBuffer(storage=new_storage) ... print(rb) ReplayBuffer( storage=TensorStorage( data=TensorDict( fields={ action: MemoryMappedTensor(shape=torch.Size([1000000, 8]), device=cpu, dtype=torch.float32, is_shared=True), episode: MemoryMappedTensor(shape=torch.Size([1000000]), device=cpu, dtype=torch.int64, is_shared=True), next: TensorDict( fields={ done: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), reward: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.float64, is_shared=True), terminated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True), truncated: MemoryMappedTensor(shape=torch.Size([1000000, 1]), device=cpu, dtype=torch.bool, is_shared=True)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), obs: MemoryMappedTensor(shape=torch.Size([1000000, 31]), device=cpu, dtype=torch.float64, is_shared=True), observation: TensorDict( fields={ }, batch_size=torch.Size([1000000]), device=cpu, is_shared=False)}, batch_size=torch.Size([1000000]), device=cpu, is_shared=False), shape=torch.Size([1000000]), len=1000000, max_size=1000000), sampler=RandomSampler(), writer=RoundRobinWriter(cursor=0, full_storage=True), batch_size=None, collate_fn=<function _collate_id at 0x168406fc0>)
- register_load_hook(hook: Callable[[Any], Any])¶
为存储注册加载钩子。
注意
钩子目前不会在保存重放缓冲区时序列化:每次创建缓冲区时都必须手动重新初始化它们。
- register_save_hook(hook: Callable[[Any], Any])¶
为存储注册保存钩子。
注意
钩子目前不会在保存重放缓冲区时序列化:每次创建缓冲区时都必须手动重新初始化它们。
- sample(batch_size: int | None = None, return_info: bool = False, include_info: bool | None = None) TensorDictBase ¶
从重放缓冲区中采样数据批次。
使用 Sampler 采样索引,并从 Storage 中检索它们。
- 参数:
batch_size (int, optional) – 要收集的数据的大小。如果未提供,此方法将采样由采样器指示的批次大小。
return_info (bool) – 是否返回信息。如果为 True,则结果为元组 (data, info)。如果为 False,则结果为数据。
- 返回:
一个包含在重放缓冲区中选择的数据批次的 tensordict。如果 return_info 标志设置为 True,则包含此 tensordict 和信息的元组。
- set_storage(storage: Storage, collate_fn: Callable | None = None)¶
在重放缓冲区中设置新的存储并返回之前的存储。
- 参数:
storage (Storage) – 缓冲区的新的存储。
collate_fn (callable, optional) – 如果提供,collate_fn 将设置为此值。否则,它将被重置为默认值。
- property write_count¶
通过 add 和 extend 写入缓冲区的总项数。