快捷方式

MCPToolTransform

class torchrl.envs.llm.transforms.MCPToolTransform(tools: dict[str, callable], tool_schemas: dict[str, dict], tokenizer=None, tool_name: str = 'tool', timeout: float = 10.0)[源代码]

一个在响应 LLM 操作时执行 MCP 风格工具的转换。

此转换允许执行遵循 Mission Control Protocol 模式的工具,其中工具定义了清晰的输入/输出模式并以受控方式执行。

参数:
  • tools (dict[str, callable]) – 一个将工具名称映射到其实现函数的字典。每个函数应接受与其实例匹配的 kwargs,并返回一个包含结果的字典。

  • tool_schemas (dict[str, dict]) – 一个将工具名称映射到其 JSON 模式的字典。每个模式应定义工具的参数和返回类型。

  • tokenizer – 要使用的分词器。默认为 None(无分词器)。

  • tool_name – 聊天历史中的工具名称。默认为 “tool”

  • timeout – 工具执行的超时时间(秒)。默认为 10.0

示例

>>> from torchrl.envs.llm.transforms import MCPToolTransform
>>> from transformers import AutoTokenizer
>>> from tensordict import TensorDict, set_list_to_stack
>>> from torchrl.envs.llm import ChatEnv
>>> set_list_to_stack(True).set()
>>> tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen2.5-3B")
>>> # Define a simple tool
>>> def add_numbers(a: int, b: int) -> dict:
...     return {"result": a + b}
>>> # Define its schema
>>> add_schema = {
...     "name": "add_numbers",
...     "description": "Add two numbers",
...     "parameters": {
...         "type": "object",
...         "properties": {
...             "a": {"type": "integer"},
...             "b": {"type": "integer"}
...         },
...         "required": ["a", "b"]
...     }
... }
>>> tools = {"add_numbers": add_numbers}
>>> schemas = {"add_numbers": add_schema}
>>> env = ChatEnv(
...     batch_size=(1,),
...     system_prompt="I'm the system, do as I say",
...     apply_template=True,
...     tokenizer=tokenizer,
... )
>>> env = env.append_transform(MCPToolTransform(tools, schemas))
>>> r = env.reset(TensorDict(text=["This is the user prompt"], batch_size=(1,)))
>>> r["text_response"] = ["Let me add two numbers:\n<tool>add_numbers\n{\"a\": 1, \"b\": 2}</tool>"]
>>> s = env.step(r)
>>> print(s['next', 'history'].apply_chat_template(tokenizer=tokenizer))
['<|im_start|>system\n'
 "I'm the system, do as I say<|im_end|>\n"
 '<|im_start|>user\n'
 'This is the user prompt<|im_end|>\n'
 '<|im_start|>assistant\n'
 'Let me add two numbers:\n'
 '<tool>add_numbers\n'
 '{"a": 1, "b": 2}</tool><|im_end|>\n'
 '<|im_start|>user\n'
 '<tool_response>\n'
 'Tool add_numbers executed successfully:\n'
 '{"result": 3}\n'
 '</tool_response><|im_end|>\n'
 '<|im_start|>assistant\n']
add_module(name: str, module: Optional[Module]) None

将子模块添加到当前模块。

可以使用给定的名称作为属性访问该模块。

参数:
  • name (str) – 子模块的名称。子模块可以通过给定名称从此模块访问

  • module (Module) – 要添加到模块中的子模块。

apply(fn: Callable[[Module], None]) T

fn 递归应用于每个子模块(由 .children() 返回)以及自身。

典型用法包括初始化模型的参数(另请参阅 torch.nn.init)。

参数:

fn (Module -> None) – 要应用于每个子模块的函数

返回:

self

返回类型:

模块

示例

>>> @torch.no_grad()
>>> def init_weights(m):
>>>     print(m)
>>>     if type(m) == nn.Linear:
>>>         m.weight.fill_(1.0)
>>>         print(m.weight)
>>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2))
>>> net.apply(init_weights)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
Linear(in_features=2, out_features=2, bias=True)
Parameter containing:
tensor([[1., 1.],
        [1., 1.]], requires_grad=True)
Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
bfloat16() T

将所有浮点参数和缓冲区转换为 bfloat16 数据类型。

注意

此方法就地修改模块。

返回:

self

返回类型:

模块

buffers(recurse: bool = True) Iterator[Tensor]

返回模块缓冲区的迭代器。

参数:

recurse (bool) – 如果为 True,则会产生此模块及其所有子模块的 buffer。否则,仅会产生此模块的直接成员 buffer。

产生:

torch.Tensor – 模块缓冲区

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> for buf in model.buffers():
>>>     print(type(buf), buf.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
children() Iterator[Module]

返回直接子模块的迭代器。

产生:

Module – 子模块

close()

关闭转换。

property collector: DataCollectorBase | None

返回与容器关联的收集器(如果存在)。

每当变换需要了解收集器或与之关联的策略时,都可以使用此属性。请确保仅在未嵌套在子进程中的变换上调用此属性。收集器引用不会传递给 ParallelEnv 或类似的批处理环境的 worker。

请确保仅在未嵌套在子进程中的转换上调用此属性。Collector 引用不会传递给 ParallelEnv 或类似批处理环境的 worker。

compile(*args, **kwargs)

使用 torch.compile() 编译此 Module 的前向传播。

此 Module 的 __call__ 方法被编译,并且所有参数按原样传递给 torch.compile()

有关此函数的参数的详细信息,请参阅 torch.compile()

property container: EnvBase | None

返回包含该变换的环境。

示例

>>> from torchrl.envs import TransformedEnv, Compose, RewardSum, StepCounter
>>> from torchrl.envs.libs.gym import GymEnv
>>> env = TransformedEnv(GymEnv("Pendulum-v1"), Compose(RewardSum(), StepCounter()))
>>> env.transform[0].container is env
True
cpu() T

将所有模型参数和缓冲区移动到 CPU。

注意

此方法就地修改模块。

返回:

self

返回类型:

模块

cuda(device: Optional[Union[int, device]] = None) T

将所有模型参数和缓冲区移动到 GPU。

这也会使相关的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 GPU 上,则应在构建优化器之前调用此函数。

注意

此方法就地修改模块。

参数:

device (int, optional) – 如果指定,所有参数将复制到该设备

返回:

self

返回类型:

模块

double() T

将所有浮点参数和缓冲区转换为 double 数据类型。

注意

此方法就地修改模块。

返回:

self

返回类型:

模块

eval() T

将模块设置为评估模式。

这只对某些模块有影响。有关它们在训练/评估模式下的行为(即它们是否受到影响,例如 DropoutBatchNorm 等)的详细信息,请参阅特定模块的文档。

这等同于 self.train(False)

有关 .eval() 和一些可能与之混淆的类似机制之间的比较,请参阅 本地禁用梯度计算

返回:

self

返回类型:

模块

extra_repr() str

返回模块的额外表示。

要打印自定义额外信息,您应该在自己的模块中重新实现此方法。单行和多行字符串均可接受。

float() T

将所有浮点参数和缓冲区转换为 float 数据类型。

注意

此方法就地修改模块。

返回:

self

返回类型:

模块

forward(tensordict: TensorDictBase = None) TensorDictBase

读取输入 tensordict,并对选定的键应用转换。

默认情况下,此方法

  • 直接调用 _apply_transform()

  • 不调用 _step()_call()

此方法不在 env.step 的任何点被调用。但是,它在 sample() 中被调用。

注意

forward 也可以使用 dispatch 方法通过常规关键字参数与键进行转换。

示例

>>> class TransformThatMeasuresBytes(Transform):
...     '''Measures the number of bytes in the tensordict, and writes it under `"bytes"`.'''
...     def __init__(self):
...         super().__init__(in_keys=[], out_keys=["bytes"])
...
...     def forward(self, tensordict: TensorDictBase) -> TensorDictBase:
...         bytes_in_td = tensordict.bytes()
...         tensordict["bytes"] = bytes
...         return tensordict
>>> t = TransformThatMeasuresBytes()
>>> env = env.append_transform(t) # works within envs
>>> t(TensorDict(a=0))  # Works offline too.
get_buffer(target: str) Tensor

返回由 target 给定的缓冲区(如果存在),否则抛出错误。

有关此方法功能的更详细解释以及如何正确指定 target,请参阅 get_submodule 的文档字符串。

参数:

target – 要查找的 buffer 的完全限定字符串名称。(要指定完全限定字符串,请参阅 get_submodule。)

返回:

target 引用的缓冲区

返回类型:

torch.Tensor

抛出:

AttributeError – 如果目标字符串引用了无效路径或解析为非 buffer 对象。

get_extra_state() Any

返回要包含在模块 state_dict 中的任何额外状态。

如果您需要存储额外的状态,请实现此方法以及相应的 set_extra_state()。此函数在构建模块的 state_dict() 时被调用。

请注意,为了确保 state_dict 的可序列化正常工作,额外的状态应该是可 picklable 的。我们仅为序列化 Tensor 提供向后兼容性保证;其他对象的序列化 pickled 形式如果发生更改,可能会破坏向后兼容性。

返回:

要存储在模块 state_dict 中的任何额外状态

返回类型:

对象

get_parameter(target: str) Parameter

如果存在,返回由 target 给定的参数,否则抛出错误。

有关此方法功能的更详细解释以及如何正确指定 target,请参阅 get_submodule 的文档字符串。

参数:

target – 要查找的 Parameter 的完全限定字符串名称。(要指定完全限定字符串,请参阅 get_submodule。)

返回:

target 引用的参数

返回类型:

torch.nn.Parameter

抛出:

AttributeError – 如果目标字符串引用了无效路径或解析为非 nn.Parameter 的对象。

get_submodule(target: str) Module

如果存在,返回由 target 给定的子模块,否则抛出错误。

例如,假设您有一个 nn.Module A,它看起来像这样

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2))
        )
        (linear): Linear(in_features=100, out_features=200, bias=True)
    )
)

(图示显示了一个 nn.Module AA 具有一个嵌套的子模块 net_b,而 net_b 又有两个子模块 net_clinearnet_c 然后有一个子模块 conv。)

要检查我们是否拥有 linear 子模块,我们会调用 get_submodule("net_b.linear")。要检查我们是否拥有 conv 子模块,我们会调用 get_submodule("net_b.net_c.conv")

get_submodule 的运行时间受 target 中模块嵌套深度的限制。对 named_modules 的查询可以达到相同的结果,但其复杂度为 O(N),其中 N 是传递模块的数量。因此,对于简单的检查某个子模块是否存在,应始终使用 get_submodule

参数:

target – 要查找的子模块的完全限定字符串名称。(要指定完全限定字符串,请参阅上面的示例。)

返回:

target 引用的子模块

返回类型:

torch.nn.Module

抛出:

AttributeError – 如果沿目标字符串解析的路径中的任何位置(子)路径解析为不存在的属性名或不是 nn.Module 实例的对象。

half() T

将所有浮点参数和缓冲区转换为 half 数据类型。

注意

此方法就地修改模块。

返回:

self

返回类型:

模块

init(tensordict) None

运行转换的初始化步骤。

inv(tensordict: TensorDictBase = None) TensorDictBase

读取输入 tensordict,并对选定的键应用逆变换。

默认情况下,此方法

  • 直接调用 _inv_apply_transform()

  • 不调用 _inv_call()

注意

inv 也可以使用 dispatch 方法通过常规关键字参数与键进行转换。

注意

invextend() 调用。

ipu(device: Optional[Union[int, device]] = None) T

将所有模型参数和缓冲区移动到 IPU。

这也会使关联的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 IPU 上,则应在构建优化器之前调用它。

注意

此方法就地修改模块。

参数:

device (int, optional) – 如果指定,所有参数将复制到该设备

返回:

self

返回类型:

模块

load_state_dict(state_dict: Mapping[str, Any], strict: bool = True, assign: bool = False)

将参数和缓冲区从 state_dict 复制到当前模块及其后代模块中。

如果 strictTrue,则 state_dict 的键必须与当前模块的 state_dict() 函数返回的键完全匹配。

警告

如果 assignTrue,则优化器必须在调用 load_state_dict 后创建,除非 get_swap_module_params_on_conversion()True

参数:
  • state_dict (dict) – 包含参数和持久 buffer 的字典。

  • strict (bool, optional) – 是否严格强制 state_dict 中的键与当前模块的 state_dict() 函数返回的键匹配。默认为 True

  • assign (bool, optional) – 当设置为 False 时,会保留当前模块中张量的属性;而设置为 True 时,会保留 state_dict 中张量的属性。唯一的例外是 requires_grad 字段。 默认值: ``False`

返回:

  • missing_keys 是一个包含任何预期键的 str 列表。

    在提供的 state_dict 中缺失的任何键的字符串列表。

  • unexpected_keys 是一个包含不匹配的键的 str 列表。

    不期望但在提供的 state_dict 中存在的键。

返回类型:

NamedTuple,包含 missing_keysunexpected_keys 字段

注意

如果一个参数或缓冲区被注册为 None 并且其对应的键存在于 state_dict 中,load_state_dict() 将引发 RuntimeError

modules() Iterator[Module]

返回网络中所有模块的迭代器。

产生:

Module – 网络中的一个模块

注意

重复的模块只返回一次。在以下示例中,l 只返回一次。

示例

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.modules()):
...     print(idx, '->', m)

0 -> Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
)
1 -> Linear(in_features=2, out_features=2, bias=True)
mtia(device: Optional[Union[int, device]] = None) T

将所有模型参数和缓冲区移动到 MTIA。

这也会使关联的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 MTIA 上,则应在构建优化器之前调用它。

注意

此方法就地修改模块。

参数:

device (int, optional) – 如果指定,所有参数将复制到该设备

返回:

self

返回类型:

模块

named_buffers(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.Tensor]]

返回模块缓冲区上的迭代器,同时生成缓冲区的名称和缓冲区本身。

参数:
  • prefix (str) – 为所有 buffer 名称添加前缀。

  • recurse (bool, optional) – 如果为 True,则会生成此模块及其所有子模块的 buffers。否则,仅生成此模块直接成员的 buffers。默认为 True。

  • remove_duplicate (bool, optional) – 是否在结果中删除重复的 buffers。默认为 True。

产生:

(str, torch.Tensor) – 包含名称和缓冲区的元组

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> for name, buf in self.named_buffers():
>>>     if name in ['running_var']:
>>>         print(buf.size())
named_children() Iterator[tuple[str, 'Module']]

返回对直接子模块的迭代器,生成模块的名称和模块本身。

产生:

(str, Module) – 包含名称和子模块的元组

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> for name, module in model.named_children():
>>>     if name in ['conv4', 'conv5']:
>>>         print(module)
named_modules(memo: Optional[set['Module']] = None, prefix: str = '', remove_duplicate: bool = True)

返回网络中所有模块的迭代器,同时生成模块的名称和模块本身。

参数:
  • memo – 用于存储已添加到结果中的模块集合的 memo

  • prefix – 将添加到模块名称的名称前缀

  • remove_duplicate – 是否从结果中删除重复的模块实例

产生:

(str, Module) – 名称和模块的元组

注意

重复的模块只返回一次。在以下示例中,l 只返回一次。

示例

>>> l = nn.Linear(2, 2)
>>> net = nn.Sequential(l, l)
>>> for idx, m in enumerate(net.named_modules()):
...     print(idx, '->', m)

0 -> ('', Sequential(
  (0): Linear(in_features=2, out_features=2, bias=True)
  (1): Linear(in_features=2, out_features=2, bias=True)
))
1 -> ('0', Linear(in_features=2, out_features=2, bias=True))
named_parameters(prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) Iterator[tuple[str, torch.nn.parameter.Parameter]]

返回模块参数的迭代器,同时生成参数的名称和参数本身。

参数:
  • prefix (str) – 为所有参数名称添加前缀。

  • recurse (bool) – 如果为 True,则会生成此模块及其所有子模块的参数。否则,仅生成此模块直接成员的参数。

  • remove_duplicate (bool, optional) – 是否在结果中删除重复的参数。默认为 True。

产生:

(str, Parameter) – 包含名称和参数的元组

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> for name, param in self.named_parameters():
>>>     if name in ['bias']:
>>>         print(param.size())
parameters(recurse: bool = True) Iterator[Parameter]

返回模块参数的迭代器。

这通常传递给优化器。

参数:

recurse (bool) – 如果为 True,则会生成此模块及其所有子模块的参数。否则,仅生成此模块直接成员的参数。

产生:

Parameter – 模块参数

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> for param in model.parameters():
>>>     print(type(param), param.size())
<class 'torch.Tensor'> (20L,)
<class 'torch.Tensor'> (20L, 1L, 5L, 5L)
property parent: TransformedEnv | None

返回变换的父环境。

父环境是包含直到当前变换的所有变换的环境。

示例

>>> from torchrl.envs import TransformedEnv, Compose, RewardSum, StepCounter
>>> from torchrl.envs.libs.gym import GymEnv
>>> env = TransformedEnv(GymEnv("Pendulum-v1"), Compose(RewardSum(), StepCounter()))
>>> env.transform[1].parent
TransformedEnv(
    env=GymEnv(env=Pendulum-v1, batch_size=torch.Size([]), device=cpu),
    transform=Compose(
            RewardSum(keys=['reward'])))
register_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]]) RemovableHandle

在模块上注册一个反向传播钩子。

此函数已弃用,请使用 register_full_backward_hook() 替代,并且此函数行为在未来版本中将发生更改。

返回:

一个句柄,可用于通过调用 handle.remove() 来移除添加的钩子

返回类型:

torch.utils.hooks.RemovableHandle

register_buffer(name: str, tensor: Optional[Tensor], persistent: bool = True) None

向模块添加一个缓冲区。

这通常用于注册不应被视为模型参数的缓冲区。例如,BatchNorm 的 running_mean 不是参数,但它是模块状态的一部分。缓冲区默认是持久化的,并将与参数一起保存。通过将 persistent 设置为 False 可以更改此行为。持久化缓冲区和非持久化缓冲区之间的唯一区别是后者不会成为此模块 state_dict 的一部分。

可以使用给定名称作为属性访问缓冲区。

参数:
  • name (str) – buffer 的名称。可以使用给定的名称从此模块访问 buffer

  • tensor (TensorNone) – 要注册的缓冲区。如果为 None,则运行在缓冲区上的操作(如 cuda)将被忽略。如果为 None,则该缓冲区 **不** 包含在模块的 state_dict 中。

  • persistent (bool) – 缓冲区是否是此模块 state_dict 的一部分。

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> self.register_buffer('running_mean', torch.zeros(num_features))
register_forward_hook(hook: Union[Callable[[T, tuple[Any, ...], Any], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any], Any], Optional[Any]]], *, prepend: bool = False, with_kwargs: bool = False, always_call: bool = False) RemovableHandle

在模块上注册一个前向钩子。

每次调用 forward() 计算出输出后,都会调用此钩子。

如果 with_kwargsFalse 或未指定,则输入仅包含传递给模块的位置参数。关键字参数不会传递给钩子,只传递给 forward。钩子可以修改输出。它可以就地修改输入,但这不会影响前向传播,因为它是在 forward() 调用后执行的。钩子的签名应为:

hook(module, args, output) -> None or modified output

如果 with_kwargsTrue,则前向钩子将接收传递给前向函数的 kwargs,并应返回可能已修改的输出。钩子的签名应为:

hook(module, args, kwargs, output) -> None or modified output
参数:
  • hook (Callable) – 用户定义的待注册钩子。

  • prepend (bool) – 如果为 True,则提供的 hook 将在当前 torch.nn.Module 的所有现有 forward 钩子之前触发。否则,提供的 hook 将在当前 torch.nn.Module 的所有现有 forward 钩子之后触发。请注意,使用 register_module_forward_hook() 注册的全局 forward 钩子将在通过此方法注册的所有钩子之前触发。默认为 False

  • with_kwargs (bool) – 如果为 True,则 hook 将接收传递给前向函数的 kwargs。默认为 False

  • always_call (bool) – 如果为 True,则无论在调用 Module 时是否引发异常,都会运行 hook。默认为 False

返回:

一个句柄,可用于通过调用 handle.remove() 来移除添加的钩子

返回类型:

torch.utils.hooks.RemovableHandle

register_forward_pre_hook(hook: Union[Callable[[T, tuple[Any, ...]], Optional[Any]], Callable[[T, tuple[Any, ...], dict[str, Any]], Optional[tuple[Any, dict[str, Any]]]], *, prepend: bool = False, with_kwargs: bool = False) RemovableHandle

在模块上注册一个前向预钩子。

每次在调用 forward() 之前,都会调用此钩子。

如果 with_kwargs 为 false 或未指定,则输入仅包含传递给模块的位置参数。关键字参数不会传递给钩子,只传递给 forward。钩子可以修改输入。用户可以返回一个元组或单个修改后的值。钩子的签名应为:

hook(module, args) -> None or modified input

如果 with_kwargs 为 true,则前向预钩子将接收传递给前向函数的 kwargs,如果钩子修改了输入,则应返回 args 和 kwargs。钩子的签名应为:

hook(module, args, kwargs) -> None or a tuple of modified input and kwargs
参数:
  • hook (Callable) – 用户定义的待注册钩子。

  • prepend (bool) – 如果为 True,则提供的 hook 将在当前 torch.nn.Module 的所有现有 forward_pre 钩子之前触发。否则,提供的 hook 将在当前 torch.nn.Module 的所有现有 forward_pre 钩子之后触发。请注意,使用 register_module_forward_pre_hook() 注册的全局 forward_pre 钩子将在通过此方法注册的所有钩子之前触发。默认为 False

  • with_kwargs (bool) – 如果为 True,则 hook 将接收传递给前向函数的 kwargs。默认为 False

返回:

一个句柄,可用于通过调用 handle.remove() 来移除添加的钩子

返回类型:

torch.utils.hooks.RemovableHandle

register_full_backward_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor], Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle

在模块上注册一个反向传播钩子。

hook 将在计算模块的梯度时被调用,即只有在计算模块输出的梯度时 hook 才会执行。hook 应具有以下签名

hook(module, grad_input, grad_output) -> tuple(Tensor) or None

中的 grad_inputgrad_output 是包含相对于输入和输出的梯度的元组。钩子不应修改其参数,但可以选择性地返回一个关于输入的新的梯度,该梯度将用于替代后续计算中的 grad_inputgrad_input 将仅对应于作为位置参数提供的输入,并且所有关键字参数都将被忽略。 grad_inputgrad_output 中的条目对于所有非 Tensor 参数将为 None

由于技术原因,当此钩子应用于模块时,其前向函数将接收传递给模块的每个张量的视图。类似地,调用者将接收模块前向函数返回的每个张量的视图。

警告

使用反向传播钩子时不允许就地修改输入或输出,否则将引发错误。

参数:
  • hook (Callable) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为 True,则提供的 hook 将在当前 torch.nn.Module 的所有现有 backward 钩子之前触发。否则,提供的 hook 将在当前 torch.nn.Module 的所有现有 backward 钩子之后触发。请注意,使用 register_module_full_backward_hook() 注册的全局 backward 钩子将在通过此方法注册的所有钩子之前触发。

返回:

一个句柄,可用于通过调用 handle.remove() 来移除添加的钩子

返回类型:

torch.utils.hooks.RemovableHandle

register_full_backward_pre_hook(hook: Callable[[Module, Union[tuple[torch.Tensor, ...], Tensor]], Union[None, tuple[torch.Tensor, ...], Tensor]], prepend: bool = False) RemovableHandle

在模块上注册一个反向预钩子。

每次计算模块的梯度时,将调用此钩子。钩子应具有以下签名

hook(module, grad_output) -> tuple[Tensor] or None

中的 grad_output 是一个元组。钩子不应修改其参数,但可以选择性地返回一个关于输出的新的梯度,该梯度将用于替代后续计算中的 grad_output。对于所有非 Tensor 参数,grad_output 中的条目将为 None

由于技术原因,当此钩子应用于模块时,其前向函数将接收传递给模块的每个张量的视图。类似地,调用者将接收模块前向函数返回的每个张量的视图。

警告

使用反向传播钩子时不允许就地修改输入,否则将引发错误。

参数:
  • hook (Callable) – 要注册的用户定义钩子。

  • prepend (bool) – 如果为 True,则提供的 hook 将在当前 torch.nn.Module 的所有现有 backward_pre 钩子之前触发。否则,提供的 hook 将在当前 torch.nn.Module 的所有现有 backward_pre 钩子之后触发。请注意,使用 register_module_full_backward_pre_hook() 注册的全局 backward_pre 钩子将在通过此方法注册的所有钩子之前触发。

返回:

一个句柄,可用于通过调用 handle.remove() 来移除添加的钩子

返回类型:

torch.utils.hooks.RemovableHandle

register_load_state_dict_post_hook(hook)

注册一个后钩子,用于在模块的 load_state_dict() 被调用后运行。

它应该具有以下签名:

hook(module, incompatible_keys) -> None

参数 module 是当前注册了此钩子的模块,参数 incompatible_keys 是一个包含 missing_keysunexpected_keys 属性的 NamedTuplemissing_keys 是一个 list,包含缺失的键,而 unexpected_keys 是一个 list,包含意外的键。

如果需要,可以就地修改给定的 incompatible_keys。

请注意,当以 strict=True 调用 load_state_dict() 时进行的检查会受到钩子对 missing_keysunexpected_keys 的修改的影响,正如预期的那样。向这两个键集添加内容将导致在 strict=True 时引发错误,而清空 missing_keys 和 unexpected_keys 将避免错误。

返回:

一个句柄,可用于通过调用 handle.remove() 来移除添加的钩子

返回类型:

torch.utils.hooks.RemovableHandle

register_load_state_dict_pre_hook(hook)

注册一个预钩子,用于在模块的 load_state_dict() 被调用之前运行。

它应该具有以下签名:

hook(module, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) -> None # noqa: B950

参数:

hook (Callable) – 在加载状态字典之前将调用的可调用钩子。

register_module(name: str, module: Optional[Module]) None

add_module() 的别名。

register_parameter(name: str, param: Optional[Parameter]) None

向模块添加一个参数。

可以使用给定名称作为属性访问该参数。

参数:
  • name (str) – 参数的名称。可以通过给定名称从该模块访问该参数。

  • param (ParameterNone) – 要添加到模块的参数。如果为 None,则会忽略在参数上运行的操作,例如 cuda。如果为 None,则该参数**不**包含在模块的 state_dict 中。

register_state_dict_post_hook(hook)

注册 state_dict() 方法的后置钩子。

它应该具有以下签名:

hook(module, state_dict, prefix, local_metadata) -> None

注册的钩子可以就地修改 state_dict

register_state_dict_pre_hook(hook)

注册 state_dict() 方法的前置钩子。

它应该具有以下签名:

hook(module, prefix, keep_vars) -> None

注册的钩子可用于在进行 state_dict 调用之前执行预处理。

requires_grad_(requires_grad: bool = True) T

更改自动梯度是否应记录此模块中参数的操作。

此方法就地设置参数的 requires_grad 属性。

此方法有助于冻结模块的一部分以进行微调或单独训练模型的一部分(例如,GAN 训练)。

有关 .requires_grad_() 与其他可能与之混淆的机制的比较,请参阅 本地禁用梯度计算

参数:

requires_grad (bool) – 自动求导是否应记录此模块上的参数操作。默认为 True

返回:

self

返回类型:

模块

set_extra_state(state: Any) None

设置加载的 state_dict 中包含的额外状态。

此函数由 load_state_dict() 调用,用于处理 state_dict 中的任何额外状态。如果需要将额外状态存储在其 state_dict 中,请为此模块实现此函数和一个对应的 get_extra_state()

参数:

state (dict) – 来自 state_dict 的额外状态

set_submodule(target: str, module: Module, strict: bool = False) None

如果存在,设置由 target 给定的子模块,否则抛出错误。

注意

如果 strict 设置为 False (默认),则该方法将替换现有子模块,如果父模块存在,则会创建新的子模块。如果 strict 设置为 True,则该方法只会尝试替换现有子模块,如果子模块不存在则会引发错误。

例如,假设您有一个 nn.Module A,它看起来像这样

A(
    (net_b): Module(
        (net_c): Module(
            (conv): Conv2d(3, 3, 3)
        )
        (linear): Linear(3, 3)
    )
)

(图示显示了一个 nn.Module AA 有一个嵌套子模块 net_b,它本身有两个子模块 net_clinearnet_c 然后有一个子模块 conv。)

要用新的 Linear 子模块覆盖 Conv2d,您可以调用 set_submodule("net_b.net_c.conv", nn.Linear(1, 1)),其中 strict 可以是 TrueFalse

要将新的 Conv2d 子模块添加到现有的 net_b 模块,您可以调用 set_submodule("net_b.conv", nn.Conv2d(1, 1, 1))

在上面的示例中,如果您设置 strict=True 并调用 set_submodule("net_b.conv", nn.Conv2d(1, 1, 1), strict=True),则会引发 AttributeError,因为 net_b 没有名为 conv 的子模块。

参数:
  • target – 要查找的子模块的完全限定字符串名称。(要指定完全限定字符串,请参阅上面的示例。)

  • module – 要设置子模块的对象。

  • strict – 如果为 False,则该方法将替换现有子模块,如果父模块存在,则会创建新的子模块。如果为 True,则该方法只会尝试替换现有子模块,如果子模块尚不存在则会引发错误。

抛出:
  • ValueError – 如果 target 字符串为空,或者 module 不是 nn.Module 的实例。

  • AttributeError – 如果 target 字符串导致的路径中的任何一点将 (子) 路径解析为不存在的属性名或非 nn.Module 实例的对象。

share_memory() T

请参阅 torch.Tensor.share_memory_()

state_dict(*args, destination=None, prefix='', keep_vars=False)

返回一个字典,其中包含对模块整个状态的引用。

参数和持久缓冲区(例如,运行平均值)都包含在内。键是相应的参数和缓冲区名称。设置为 None 的参数和缓冲区不包含在内。

注意

返回的对象是浅拷贝。它包含对模块参数和缓冲区的引用。

警告

目前 state_dict() 也按顺序接受 destinationprefixkeep_vars 的位置参数。但是,这正在被弃用,并且在未来版本中将强制使用关键字参数。

警告

请避免使用参数 destination,因为它不是为最终用户设计的。

参数:
  • destination (dict, optional) – 如果提供,模块的状态将更新到字典中,并返回相同的对象。否则,将创建一个 OrderedDict 并返回。默认为 None

  • prefix (str, optional) – a prefix added to parameter and buffer names to compose the keys in state_dict. Default: ''

  • keep_vars (bool, optional) – 默认情况下,状态字典中返回的 Tensor 会与 autograd 分离。如果设置为 True,则不会执行分离。默认为 False

返回:

包含模块整体状态的字典

返回类型:

dict

示例

>>> # xdoctest: +SKIP("undefined vars")
>>> module.state_dict().keys()
['bias', 'weight']
to(*args, **kwargs)

移动和/或转换参数和缓冲区。

这可以这样调用

to(device=None, dtype=None, non_blocking=False)
to(dtype, non_blocking=False)
to(tensor, non_blocking=False)
to(memory_format=torch.channels_last)

其签名与 torch.Tensor.to() 类似,但只接受浮点数或复数 dtype。此外,此方法只会将浮点数或复数参数和缓冲区转换为 dtype (如果已提供)。整数参数和缓冲区将被移动到 device (如果已提供),但 dtype 保持不变。当设置 non_blocking 时,它会尝试与主机进行异步转换/移动 (如果可能),例如,将具有固定内存的 CPU Tensor 移动到 CUDA 设备。

有关示例,请参阅下文。

注意

此方法就地修改模块。

参数:
  • device (torch.device) – 此模块中参数和缓冲区的目标设备

  • dtype (torch.dtype) – 此模块中参数和缓冲区的目标浮点数或复数 dtype

  • tensor (torch.Tensor) – 其 dtype 和设备是此模块中所有参数和缓冲区的目标 dtype 和设备

  • memory_format (torch.memory_format) – 此模块中 4D 参数和缓冲区的目标内存格式 (仅关键字参数)

返回:

self

返回类型:

模块

示例

>>> # xdoctest: +IGNORE_WANT("non-deterministic")
>>> linear = nn.Linear(2, 2)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]])
>>> linear.to(torch.double)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1913, -0.3420],
        [-0.5113, -0.2325]], dtype=torch.float64)
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1)
>>> gpu1 = torch.device("cuda:1")
>>> linear.to(gpu1, dtype=torch.half, non_blocking=True)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1')
>>> cpu = torch.device("cpu")
>>> linear.to(cpu)
Linear(in_features=2, out_features=2, bias=True)
>>> linear.weight
Parameter containing:
tensor([[ 0.1914, -0.3420],
        [-0.5112, -0.2324]], dtype=torch.float16)

>>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble)
>>> linear.weight
Parameter containing:
tensor([[ 0.3741+0.j,  0.2382+0.j],
        [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128)
>>> linear(torch.ones(3, 2, dtype=torch.cdouble))
tensor([[0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j],
        [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128)
to_empty(*, device: Optional[Union[int, str, device]], recurse: bool = True) T

将参数和缓冲区移动到指定设备,而不复制存储。

参数:
  • device (torch.device) – 此模块中参数和缓冲区的目标设备。

  • recurse (bool) – 是否递归地将子模块的参数和缓冲区移动到指定设备。

返回:

self

返回类型:

模块

train(mode: bool = True) T

将模块设置为训练模式。

这只对某些模块有效。有关它们在训练/评估模式下的行为的详细信息,例如它们是否受影响,请参阅特定模块的文档,例如 DropoutBatchNorm 等。

参数:

mode (bool) – 设置为训练模式 (True) 或评估模式 (False)。默认为 True

返回:

self

返回类型:

模块

transform_action_spec(action_spec: TensorSpec) TensorSpec

转换动作规范,使结果规范与变换映射匹配。

参数:

action_spec (TensorSpec) – 变换前的规范

返回:

转换后的预期规范

transform_done_spec(done_spec: TensorSpec) TensorSpec

变换 done spec,使结果 spec 与变换映射匹配。

参数:

done_spec (TensorSpec) – 变换前的 spec

返回:

转换后的预期规范

transform_env_batch_size(batch_size: Size)

转换父环境的 batch-size。

transform_env_device(device: device)

转换父环境的 device。

transform_input_spec(input_spec: TensorSpec) TensorSpec

转换输入规范,使结果规范与转换映射匹配。

参数:

input_spec (TensorSpec) – 转换前的规范

返回:

转换后的预期规范

transform_observation_spec(observation_spec: TensorSpec) TensorSpec

转换观察规范,使结果规范与转换映射匹配。

参数:

observation_spec (TensorSpec) – 转换前的规范

返回:

转换后的预期规范

transform_output_spec(output_spec: Composite) Composite

转换输出规范,使结果规范与转换映射匹配。

此方法通常应保持不变。更改应通过 transform_observation_spec()transform_reward_spec()transform_full_done_spec() 实现。 :param output_spec: 转换前的 spec :type output_spec: TensorSpec

返回:

转换后的预期规范

transform_reward_spec(reward_spec: TensorSpec) TensorSpec

转换奖励的 spec,使其与变换映射匹配。

参数:

reward_spec (TensorSpec) – 变换前的 spec

返回:

转换后的预期规范

transform_state_spec(state_spec: TensorSpec) TensorSpec

转换状态规范,使结果规范与变换映射匹配。

参数:

state_spec (TensorSpec) – 变换前的规范

返回:

转换后的预期规范

type(dst_type: Union[dtype, str]) T

将所有参数和缓冲区转换为 dst_type

注意

此方法就地修改模块。

参数:

dst_type (type or string) – 目标类型

返回:

self

返回类型:

模块

xpu(device: Optional[Union[int, device]] = None) T

将所有模型参数和缓冲区移动到 XPU。

这也会使关联的参数和缓冲区成为不同的对象。因此,如果模块在优化时将驻留在 XPU 上,则应在构建优化器之前调用它。

注意

此方法就地修改模块。

参数:

device (int, optional) – 如果指定,所有参数将复制到该设备

返回:

self

返回类型:

模块

zero_grad(set_to_none: bool = True) None

重置所有模型参数的梯度。

有关更多背景信息,请参阅 torch.optim.Optimizer 下的类似函数。

参数:

set_to_none (bool) – 设置为 None 而不是零。详情请参阅 torch.optim.Optimizer.zero_grad()

文档

访问全面的 PyTorch 开发者文档

查看文档

教程

为初学者和高级开发者提供深入的教程

查看教程

资源

查找开发资源并让您的问题得到解答

查看资源