评价此页

高级:进行动态决策和Bi-LSTM CRF#

创建日期:2017年4月8日 | 最后更新:2021年12月20日 | 最后验证:2024年11月5日

动态与静态深度学习工具包#

Pytorch 是一个*动态*神经网络工具包。动态工具包的另一个例子是 Dynet (我提到这个是因为使用 Pytorch 和 Dynet 类似。如果你在 Dynet 中看到一个例子,它可能会帮助你在 Pytorch 中实现它)。相反的是*静态*工具包,其中包括 Theano、Keras、TensorFlow 等。核心区别如下

  • 在静态工具包中,你只需定义一次计算图,编译它,然后将实例流式传输给它。

  • 在动态工具包中,你*为每个实例*定义一个计算图。它从不编译,而是即时执行

如果没有很多经验,很难体会到这种区别。一个例子是假设我们想构建一个深度成分解析器。假设我们的模型大致涉及以下步骤

  • 我们自底向上构建树

  • 标记根节点(句子的单词)

  • 从那里,使用神经网络和单词的嵌入来找到构成成分的组合。每当形成一个新成分时,使用某种技术来获取成分的嵌入。在这种情况下,我们的网络架构将完全取决于输入句子。在句子“The green cat scratched the wall”中,在模型的某个点,我们将要组合跨度 \((i,j,r) = (1, 3, \text{NP})\)(即,一个 NP 成分从单词 1 跨越到单词 3,在这种情况下是“The green cat”)。

然而,另一个句子可能是“Somewhere, the big fat cat scratched the wall”。在这个句子中,我们将在某个时候形成成分 \((2, 4, NP)\)。我们想要形成的成分将取决于实例。如果像静态工具包那样只编译一次计算图,那么编程这种逻辑将异常困难甚至不可能。但在动态工具包中,没有只有一个预定义的计算图。每个实例都可以有一个新的计算图,因此这个问题就不存在了。

动态工具包还具有更容易调试和代码更接近宿主语言的优点(我的意思是 Pytorch 和 Dynet 看起来更像实际的 Python 代码,而不是 Keras 或 Theano)。

Bi-LSTM 条件随机场讨论#

本节我们将看到一个完整的、复杂的Bi-LSTM条件随机场(CRF)用于命名实体识别的例子。上面的LSTM标注器通常足以满足词性标注的需求,但像CRF这样的序列模型对于NER的强大性能来说是必不可少的。本文假定读者熟悉CRF。虽然这个名字听起来吓人,但所有模型都是CRF,只是LSTM提供了特征。这是一个高级模型,比本教程中任何早期模型都要复杂得多。如果你想跳过它,那没关系。要查看你是否已准备好,请检查你是否可以做到

  • 为步骤 i 的标签 k 写出维特比变量的递推关系。

  • 修改上述递推关系以计算前向变量。

  • 再次修改上述递推关系以在对数空间中计算前向变量(提示:log-sum-exp)

如果你能做这三件事,你应该能够理解下面的代码。回想一下,CRF 计算条件概率。设 \(y\) 为标签序列,\(x\) 为单词的输入序列。然后我们计算

\[P(y|x) = \frac{\exp{(\text{Score}(x, y)})}{\sum_{y'} \exp{(\text{Score}(x, y')})} \]

其中分数通过定义一些对数势 \(\log \psi_i(x,y)\) 来确定,使得

\[\text{Score}(x,y) = \sum_i \log \psi_i(x,y) \]

为了使配分函数可计算,势必须只关注局部特征。

在Bi-LSTM CRF中,我们定义了两种势:发射势和转移势。索引 \(i\) 处的词的发射势来自Bi-LSTM在时间步 \(i\) 的隐藏状态。转移分数存储在一个 \(|T|x|T|\) 矩阵 \(\textbf{P}\) 中,其中 \(T\) 是标签集。在我的实现中,\(\textbf{P}_{j,k}\) 是从标签 \(k\) 转移到标签 \(j\) 的分数。所以

\[\text{Score}(x,y) = \sum_i \log \psi_\text{EMIT}(y_i \rightarrow x_i) + \log \psi_\text{TRANS}(y_{i-1} \rightarrow y_i) \]
\[= \sum_i h_i[y_i] + \textbf{P}_{y_i, y_{i-1}} \]

在这第二个表达式中,我们把标签看作被分配了唯一的非负索引。

如果以上讨论过于简短,您可以查看Michael Collins关于CRF的这篇文章。

实现注意事项#

下面的例子实现了对数空间中的前向算法来计算配分函数,以及维特比算法来解码。反向传播将自动为我们计算梯度。我们无需手动操作。

该实现并未优化。如果你理解正在发生什么,你可能会很快发现,前向算法中对下一个标签的迭代可能可以通过一个大型操作完成。我希望代码更具可读性。如果你想进行相关更改,你可能可以将此标注器用于实际任务。

# Author: Robert Guthrie

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim

torch.manual_seed(1)
<torch._C.Generator object at 0x7fec121506b0>

帮助函数使代码更具可读性。

def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return idx.item()


def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    return torch.tensor(idxs, dtype=torch.long)


# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
    max_score = vec[0, argmax(vec)]
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
    return max_score + \
        torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))

创建模型

class BiLSTM_CRF(nn.Module):

    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
        super(BiLSTM_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tag_to_ix = tag_to_ix
        self.tagset_size = len(tag_to_ix)

        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
                            num_layers=1, bidirectional=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j.
        self.transitions = nn.Parameter(
            torch.randn(self.tagset_size, self.tagset_size))

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000

        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (torch.randn(2, 1, self.hidden_dim // 2),
                torch.randn(2, 1, self.hidden_dim // 2))

    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = torch.full((1, self.tagset_size), -10000.)
        # START_TAG has all of the score.
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0.

        # Wrap in a variable so that we will get automatic backprop
        forward_var = init_alphas

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward tensors at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(
                    1, -1).expand(1, self.tagset_size)
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1)
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
            forward_var = torch.cat(alphas_t).view(1, -1)
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha

    def _get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
        lstm_feats = self.hidden2tag(lstm_out)
        return lstm_feats

    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = torch.zeros(1)
        tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
        return score

    def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        init_vvars = torch.full((1, self.tagset_size), -10000.)
        init_vvars[0][self.tag_to_ix[START_TAG]] = 0

        # forward_var at step i holds the viterbi variables for step i-1
        forward_var = init_vvars
        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = forward_var + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            # Now add in the emission scores, and assign forward_var to the set
            # of viterbi variables we just computed
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag_to_ix[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):
        feats = self._get_lstm_features(sentence)
        forward_score = self._forward_alg(feats)
        gold_score = self._score_sentence(feats, tags)
        return forward_score - gold_score

    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq

运行训练

START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4

# Make up some training data
training_data = [(
    "the wall street journal reported today that apple corporation made money".split(),
    "B I I I O O O B I O O".split()
), (
    "georgia tech is a university in georgia".split(),
    "B I O O O O B".split()
)]

word_to_ix = {}
for sentence, tags in training_data:
    for word in sentence:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)

tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}

model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)

# Check predictions before training
with torch.no_grad():
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
    print(model(precheck_sent))

# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(
        300):  # again, normally you would NOT do 300 epochs, it is toy data
    for sentence, tags in training_data:
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero_grad()

        # Step 2. Get our inputs ready for the network, that is,
        # turn them into Tensors of word indices.
        sentence_in = prepare_sequence(sentence, word_to_ix)
        targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)

        # Step 3. Run our forward pass.
        loss = model.neg_log_likelihood(sentence_in, targets)

        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        loss.backward()
        optimizer.step()

# Check predictions after training
with torch.no_grad():
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    print(model(precheck_sent))
# We got it!
(tensor(2.6907), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1])
(tensor(20.4906), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])

练习:判别式标注的新损失函数#

在解码时,我们实际上没有必要创建计算图,因为我们不从维特比路径分数反向传播。既然我们已经有了它,尝试训练标注器,其中损失函数是维特比路径分数与金标准路径分数之间的差值。应该清楚,此函数是非负的,当预测的标签序列是正确的标签序列时为0。这本质上是*结构化感知器*。

这个修改应该很短,因为Viterbi和score_sentence已经实现。这是一个计算图形状*取决于训练实例*的例子。虽然我没有尝试在静态工具包中实现它,但我认为这是可能的,但远没有那么直接。

获取一些真实数据并进行比较!

脚本总运行时间: (0 分钟 6.919 秒)