fasterrcnn_resnet50_fpn¶
- torchvision.models.detection.fasterrcnn_resnet50_fpn(*, weights: Optional[FasterRCNN_ResNet50_FPN_Weights] = None, progress: bool = True, num_classes: Optional[int] = None, weights_backbone: Optional[ResNet50_Weights] = ResNet50_Weights.IMAGENET1K_V1, trainable_backbone_layers: Optional[int] = None, **kwargs: Any) FasterRCNN [源代码]¶
Faster R-CNN 模型,具有来自 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 论文的 ResNet-50-FPN 主干网络。
警告
检测模块处于 Beta 阶段,不保证向后兼容。
模型输入应为一系列张量,每个张量的形状为
[C, H, W]
,对应每个图像,并且应在0-1
范围内。不同图像可以有不同的尺寸。模型的行为取决于它处于训练模式还是评估模式。
在训练期间,模型需要输入张量和目标(字典列表),包含
boxes (
FloatTensor[N, 4]
): 真实边界框,格式为[x1, y1, x2, y2]
,其中0 <= x1 < x2 <= W
和0 <= y1 < y2 <= H
。labels(
Int64Tensor[N]
):每个真实框的类别标签。
模型在训练期间返回一个
Dict[Tensor]
,其中包含 RPN 和 R-CNN 的分类和回归损失。在推理期间,模型只需要输入张量,并返回后处理后的预测结果,格式为
List[Dict[Tensor]]
,每个输入图像一个。Dict
的字段如下,其中N
是检测的数量boxes (
FloatTensor[N, 4]
): 预测的边界框,格式为[x1, y1, x2, y2]
,其中0 <= x1 < x2 <= W
和0 <= y1 < y2 <= H
。labels (
Int64Tensor[N]
): 每个检测的预测标签scores (
Tensor[N]
): 每个检测的分数
有关输出的更多详细信息,请参阅 实例分割模型。
Faster R-CNN 可导出为 ONNX,需要固定批次大小和固定尺寸的输入图像。
示例
>>> model = torchvision.models.detection.fasterrcnn_resnet50_fpn(weights=FasterRCNN_ResNet50_FPN_Weights.DEFAULT) >>> # For training >>> images, boxes = torch.rand(4, 3, 600, 1200), torch.rand(4, 11, 4) >>> boxes[:, :, 2:4] = boxes[:, :, 0:2] + boxes[:, :, 2:4] >>> labels = torch.randint(1, 91, (4, 11)) >>> images = list(image for image in images) >>> targets = [] >>> for i in range(len(images)): >>> d = {} >>> d['boxes'] = boxes[i] >>> d['labels'] = labels[i] >>> targets.append(d) >>> output = model(images, targets) >>> # For inference >>> model.eval() >>> x = [torch.rand(3, 300, 400), torch.rand(3, 500, 400)] >>> predictions = model(x) >>> >>> # optionally, if you want to export the model to ONNX: >>> torch.onnx.export(model, x, "faster_rcnn.onnx", opset_version = 11)
- 参数:
weights (
FasterRCNN_ResNet50_FPN_Weights
, 可选) – 使用的预训练权重。有关更多详细信息和可能的值,请参阅下面的FasterRCNN_ResNet50_FPN_Weights
。默认情况下,不使用预训练权重。progress (bool, 可选) – 如果为 True,则在 stderr 上显示下载进度条。默认为 True。
num_classes (int, 可选) – 模型的输出类别数(包括背景)
weights_backbone (
ResNet50_Weights
, 可选) – 主干网络的预训练权重。trainable_backbone_layers (int, 可选) – 可训练(非冻结)层数,从最后一个块开始。有效值为 0 到 5 之间,5 表示所有主干层都可训练。如果传入
None
(默认值),则此值设置为 3。**kwargs – 传递给
torchvision.models.detection.faster_rcnn.FasterRCNN
基类的参数。有关此类参数的更多详细信息,请参阅 源代码。
- class torchvision.models.detection.FasterRCNN_ResNet50_FPN_Weights(value)[源代码]¶
上面的模型构建器接受以下值作为
weights
参数。FasterRCNN_ResNet50_FPN_Weights.DEFAULT
等同于FasterRCNN_ResNet50_FPN_Weights.COCO_V1
。您也可以使用字符串,例如weights='DEFAULT'
或weights='COCO_V1'
。FasterRCNN_ResNet50_FPN_Weights.COCO_V1:
这些权重是通过遵循与论文类似的训练配方产生的。也可用作
FasterRCNN_ResNet50_FPN_Weights.DEFAULT
。box_map (在 COCO-val2017 上)
37.0
类别
__background__, person, bicycle, … (省略 88 个)
min_size
height=1, width=1
参数数量
41755286
方案
GFLOPS
134.38
文件大小
159.7 MB
推理转换可在
FasterRCNN_ResNet50_FPN_Weights.COCO_V1.transforms
中找到,并执行以下预处理操作:接受PIL.Image
、批处理的(B, C, H, W)
和单个(C, H, W)
图像torch.Tensor
对象。图像将缩放到[0.0, 1.0]
。
fasterrcnn_resnet50_fpn
的示例