评价此页

(测试版)使用 FX 构建简单的 CPU 性能分析器#

创建于:2021年3月4日 | 最后更新:2025年7月14日 | 最后验证:未验证

作者: James Reed

在本教程中,我们将使用 FX 来完成以下操作

  1. 以一种我们可以检查和收集关于代码结构和执行的统计数据的方式,来捕获 PyTorch Python 代码

  2. 构建一个小型类,用作一个简单的性能“分析器”,从实际运行中收集模型每个部分的运行时统计数据。

在本教程中,我们将使用 torchvision ResNet18 模型进行演示。

import torch
import torch.fx
import torchvision.models as models

rn18 = models.resnet18()
rn18.eval()
ResNet(
  (conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
  (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (relu): ReLU(inplace=True)
  (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
  (layer1): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
    (1): BasicBlock(
      (conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer2): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer3): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (layer4): Sequential(
    (0): BasicBlock(
      (conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (downsample): Sequential(
        (0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False)
        (1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      )
    )
    (1): BasicBlock(
      (conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
      (relu): ReLU(inplace=True)
      (conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
      (bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
    )
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
  (fc): Linear(in_features=512, out_features=1000, bias=True)
)

现在我们有了模型,我们想更深入地了解其性能。也就是说,对于以下调用,模型的哪些部分耗时最长?

input = torch.randn(5, 3, 224, 224)
output = rn18(input)

回答这个问题的一个常用方法是遍历程序源代码,在程序的各个点添加收集时间戳的代码,并比较这些时间戳之间的差异,以查看时间戳之间的区域耗时多久。

这种技术当然适用于 PyTorch 代码,但如果我们不必复制和编辑模型代码,尤其是那些我们没有编写的代码(比如这个 torchvision 模型),那就更好了。因此,我们将使用 FX 来自动化这个“插桩”过程,而无需修改任何源代码。

首先,让我们完成一些导入操作(我们将在后面的代码中使用所有这些导入)。

import statistics, tabulate, time
from typing import Any, Dict, List
from torch.fx import Interpreter

注意

tabulate 是一个外部库,并非 PyTorch 的依赖项。我们将用它来更轻松地可视化性能数据。请确保您已从您喜欢的 Python 包源安装了它。

使用符号跟踪捕获模型#

接下来,我们将使用 FX 的符号跟踪机制,将我们模型的定义捕获到一个我们可以操作和检查的数据结构中。

traced_rn18 = torch.fx.symbolic_trace(rn18)
print(traced_rn18.graph)
graph():
    %x : torch.Tensor [num_users=1] = placeholder[target=x]
    %conv1 : [num_users=1] = call_module[target=conv1](args = (%x,), kwargs = {})
    %bn1 : [num_users=1] = call_module[target=bn1](args = (%conv1,), kwargs = {})
    %relu : [num_users=1] = call_module[target=relu](args = (%bn1,), kwargs = {})
    %maxpool : [num_users=2] = call_module[target=maxpool](args = (%relu,), kwargs = {})
    %layer1_0_conv1 : [num_users=1] = call_module[target=layer1.0.conv1](args = (%maxpool,), kwargs = {})
    %layer1_0_bn1 : [num_users=1] = call_module[target=layer1.0.bn1](args = (%layer1_0_conv1,), kwargs = {})
    %layer1_0_relu : [num_users=1] = call_module[target=layer1.0.relu](args = (%layer1_0_bn1,), kwargs = {})
    %layer1_0_conv2 : [num_users=1] = call_module[target=layer1.0.conv2](args = (%layer1_0_relu,), kwargs = {})
    %layer1_0_bn2 : [num_users=1] = call_module[target=layer1.0.bn2](args = (%layer1_0_conv2,), kwargs = {})
    %add : [num_users=1] = call_function[target=operator.add](args = (%layer1_0_bn2, %maxpool), kwargs = {})
    %layer1_0_relu_1 : [num_users=2] = call_module[target=layer1.0.relu](args = (%add,), kwargs = {})
    %layer1_1_conv1 : [num_users=1] = call_module[target=layer1.1.conv1](args = (%layer1_0_relu_1,), kwargs = {})
    %layer1_1_bn1 : [num_users=1] = call_module[target=layer1.1.bn1](args = (%layer1_1_conv1,), kwargs = {})
    %layer1_1_relu : [num_users=1] = call_module[target=layer1.1.relu](args = (%layer1_1_bn1,), kwargs = {})
    %layer1_1_conv2 : [num_users=1] = call_module[target=layer1.1.conv2](args = (%layer1_1_relu,), kwargs = {})
    %layer1_1_bn2 : [num_users=1] = call_module[target=layer1.1.bn2](args = (%layer1_1_conv2,), kwargs = {})
    %add_1 : [num_users=1] = call_function[target=operator.add](args = (%layer1_1_bn2, %layer1_0_relu_1), kwargs = {})
    %layer1_1_relu_1 : [num_users=2] = call_module[target=layer1.1.relu](args = (%add_1,), kwargs = {})
    %layer2_0_conv1 : [num_users=1] = call_module[target=layer2.0.conv1](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_bn1 : [num_users=1] = call_module[target=layer2.0.bn1](args = (%layer2_0_conv1,), kwargs = {})
    %layer2_0_relu : [num_users=1] = call_module[target=layer2.0.relu](args = (%layer2_0_bn1,), kwargs = {})
    %layer2_0_conv2 : [num_users=1] = call_module[target=layer2.0.conv2](args = (%layer2_0_relu,), kwargs = {})
    %layer2_0_bn2 : [num_users=1] = call_module[target=layer2.0.bn2](args = (%layer2_0_conv2,), kwargs = {})
    %layer2_0_downsample_0 : [num_users=1] = call_module[target=layer2.0.downsample.0](args = (%layer1_1_relu_1,), kwargs = {})
    %layer2_0_downsample_1 : [num_users=1] = call_module[target=layer2.0.downsample.1](args = (%layer2_0_downsample_0,), kwargs = {})
    %add_2 : [num_users=1] = call_function[target=operator.add](args = (%layer2_0_bn2, %layer2_0_downsample_1), kwargs = {})
    %layer2_0_relu_1 : [num_users=2] = call_module[target=layer2.0.relu](args = (%add_2,), kwargs = {})
    %layer2_1_conv1 : [num_users=1] = call_module[target=layer2.1.conv1](args = (%layer2_0_relu_1,), kwargs = {})
    %layer2_1_bn1 : [num_users=1] = call_module[target=layer2.1.bn1](args = (%layer2_1_conv1,), kwargs = {})
    %layer2_1_relu : [num_users=1] = call_module[target=layer2.1.relu](args = (%layer2_1_bn1,), kwargs = {})
    %layer2_1_conv2 : [num_users=1] = call_module[target=layer2.1.conv2](args = (%layer2_1_relu,), kwargs = {})
    %layer2_1_bn2 : [num_users=1] = call_module[target=layer2.1.bn2](args = (%layer2_1_conv2,), kwargs = {})
    %add_3 : [num_users=1] = call_function[target=operator.add](args = (%layer2_1_bn2, %layer2_0_relu_1), kwargs = {})
    %layer2_1_relu_1 : [num_users=2] = call_module[target=layer2.1.relu](args = (%add_3,), kwargs = {})
    %layer3_0_conv1 : [num_users=1] = call_module[target=layer3.0.conv1](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_bn1 : [num_users=1] = call_module[target=layer3.0.bn1](args = (%layer3_0_conv1,), kwargs = {})
    %layer3_0_relu : [num_users=1] = call_module[target=layer3.0.relu](args = (%layer3_0_bn1,), kwargs = {})
    %layer3_0_conv2 : [num_users=1] = call_module[target=layer3.0.conv2](args = (%layer3_0_relu,), kwargs = {})
    %layer3_0_bn2 : [num_users=1] = call_module[target=layer3.0.bn2](args = (%layer3_0_conv2,), kwargs = {})
    %layer3_0_downsample_0 : [num_users=1] = call_module[target=layer3.0.downsample.0](args = (%layer2_1_relu_1,), kwargs = {})
    %layer3_0_downsample_1 : [num_users=1] = call_module[target=layer3.0.downsample.1](args = (%layer3_0_downsample_0,), kwargs = {})
    %add_4 : [num_users=1] = call_function[target=operator.add](args = (%layer3_0_bn2, %layer3_0_downsample_1), kwargs = {})
    %layer3_0_relu_1 : [num_users=2] = call_module[target=layer3.0.relu](args = (%add_4,), kwargs = {})
    %layer3_1_conv1 : [num_users=1] = call_module[target=layer3.1.conv1](args = (%layer3_0_relu_1,), kwargs = {})
    %layer3_1_bn1 : [num_users=1] = call_module[target=layer3.1.bn1](args = (%layer3_1_conv1,), kwargs = {})
    %layer3_1_relu : [num_users=1] = call_module[target=layer3.1.relu](args = (%layer3_1_bn1,), kwargs = {})
    %layer3_1_conv2 : [num_users=1] = call_module[target=layer3.1.conv2](args = (%layer3_1_relu,), kwargs = {})
    %layer3_1_bn2 : [num_users=1] = call_module[target=layer3.1.bn2](args = (%layer3_1_conv2,), kwargs = {})
    %add_5 : [num_users=1] = call_function[target=operator.add](args = (%layer3_1_bn2, %layer3_0_relu_1), kwargs = {})
    %layer3_1_relu_1 : [num_users=2] = call_module[target=layer3.1.relu](args = (%add_5,), kwargs = {})
    %layer4_0_conv1 : [num_users=1] = call_module[target=layer4.0.conv1](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_bn1 : [num_users=1] = call_module[target=layer4.0.bn1](args = (%layer4_0_conv1,), kwargs = {})
    %layer4_0_relu : [num_users=1] = call_module[target=layer4.0.relu](args = (%layer4_0_bn1,), kwargs = {})
    %layer4_0_conv2 : [num_users=1] = call_module[target=layer4.0.conv2](args = (%layer4_0_relu,), kwargs = {})
    %layer4_0_bn2 : [num_users=1] = call_module[target=layer4.0.bn2](args = (%layer4_0_conv2,), kwargs = {})
    %layer4_0_downsample_0 : [num_users=1] = call_module[target=layer4.0.downsample.0](args = (%layer3_1_relu_1,), kwargs = {})
    %layer4_0_downsample_1 : [num_users=1] = call_module[target=layer4.0.downsample.1](args = (%layer4_0_downsample_0,), kwargs = {})
    %add_6 : [num_users=1] = call_function[target=operator.add](args = (%layer4_0_bn2, %layer4_0_downsample_1), kwargs = {})
    %layer4_0_relu_1 : [num_users=2] = call_module[target=layer4.0.relu](args = (%add_6,), kwargs = {})
    %layer4_1_conv1 : [num_users=1] = call_module[target=layer4.1.conv1](args = (%layer4_0_relu_1,), kwargs = {})
    %layer4_1_bn1 : [num_users=1] = call_module[target=layer4.1.bn1](args = (%layer4_1_conv1,), kwargs = {})
    %layer4_1_relu : [num_users=1] = call_module[target=layer4.1.relu](args = (%layer4_1_bn1,), kwargs = {})
    %layer4_1_conv2 : [num_users=1] = call_module[target=layer4.1.conv2](args = (%layer4_1_relu,), kwargs = {})
    %layer4_1_bn2 : [num_users=1] = call_module[target=layer4.1.bn2](args = (%layer4_1_conv2,), kwargs = {})
    %add_7 : [num_users=1] = call_function[target=operator.add](args = (%layer4_1_bn2, %layer4_0_relu_1), kwargs = {})
    %layer4_1_relu_1 : [num_users=1] = call_module[target=layer4.1.relu](args = (%add_7,), kwargs = {})
    %avgpool : [num_users=1] = call_module[target=avgpool](args = (%layer4_1_relu_1,), kwargs = {})
    %flatten : [num_users=1] = call_function[target=torch.flatten](args = (%avgpool, 1), kwargs = {})
    %fc : [num_users=1] = call_module[target=fc](args = (%flatten,), kwargs = {})
    return fc

这为我们提供了 ResNet18 模型的图表示。一个图由一系列相互连接的节点组成。每个节点代表 Python 代码中的一个调用点(无论是对函数、模块还是方法的调用),而边(在每个节点上表示为 argskwargs)代表在这些调用点之间传递的值。有关图表示和 FX 其他 API 的更多信息,请参阅 FX 文档 https://pytorch.ac.cn/docs/stable/fx.html

创建分析解释器#

接下来,我们将创建一个继承自 torch.fx.Interpreter 的类。虽然 symbolic_trace 生成的 GraphModule 会编译 Python 代码,在您调用 GraphModule 时运行,但运行 GraphModule 的另一种方法是逐个执行 Graph 中的每个 Node。这正是 Interpreter 提供的功能:它逐个节点地解释图。

通过继承 Interpreter,我们可以重写各种功能并安装我们想要的分析行为。我们的目标是拥有一个对象,我们可以向其传递一个模型,调用该模型1次或多次,然后获取关于这些运行期间模型及其各部分耗时的统计数据。

让我们定义我们的 ProfilingInterpreter

class ProfilingInterpreter(Interpreter):
    def __init__(self, mod : torch.nn.Module):
        # Rather than have the user symbolically trace their model,
        # we're going to do it in the constructor. As a result, the
        # user can pass in any ``Module`` without having to worry about
        # symbolic tracing APIs
        gm = torch.fx.symbolic_trace(mod)
        super().__init__(gm)

        # We are going to store away two things here:
        #
        # 1. A list of total runtimes for ``mod``. In other words, we are
        #    storing away the time ``mod(...)`` took each time this
        #    interpreter is called.
        self.total_runtime_sec : List[float] = []
        # 2. A map from ``Node`` to a list of times (in seconds) that
        #    node took to run. This can be seen as similar to (1) but
        #    for specific sub-parts of the model.
        self.runtimes_sec : Dict[torch.fx.Node, List[float]] = {}

    ######################################################################
    # Next, let's override our first method: ``run()``. ``Interpreter``'s ``run``
    # method is the top-level entry point for execution of the model. We will
    # want to intercept this so that we can record the total runtime of the
    # model.

    def run(self, *args) -> Any:
        # Record the time we started running the model
        t_start = time.time()
        # Run the model by delegating back into Interpreter.run()
        return_val = super().run(*args)
        # Record the time we finished running the model
        t_end = time.time()
        # Store the total elapsed time this model execution took in the
        # ``ProfilingInterpreter``
        self.total_runtime_sec.append(t_end - t_start)
        return return_val

    ######################################################################
    # Now, let's override ``run_node``. ``Interpreter`` calls ``run_node`` each
    # time it executes a single node. We will intercept this so that we
    # can measure and record the time taken for each individual call in
    # the model.

    def run_node(self, n : torch.fx.Node) -> Any:
        # Record the time we started running the op
        t_start = time.time()
        # Run the op by delegating back into Interpreter.run_node()
        return_val = super().run_node(n)
        # Record the time we finished running the op
        t_end = time.time()
        # If we don't have an entry for this node in our runtimes_sec
        # data structure, add one with an empty list value.
        self.runtimes_sec.setdefault(n, [])
        # Record the total elapsed time for this single invocation
        # in the runtimes_sec data structure
        self.runtimes_sec[n].append(t_end - t_start)
        return return_val

    ######################################################################
    # Finally, we are going to define a method (one which doesn't override
    # any ``Interpreter`` method) that provides us a nice, organized view of
    # the data we have collected.

    def summary(self, should_sort : bool = False) -> str:
        # Build up a list of summary information for each node
        node_summaries : List[List[Any]] = []
        # Calculate the mean runtime for the whole network. Because the
        # network may have been called multiple times during profiling,
        # we need to summarize the runtimes. We choose to use the
        # arithmetic mean for this.
        mean_total_runtime = statistics.mean(self.total_runtime_sec)

        # For each node, record summary statistics
        for node, runtimes in self.runtimes_sec.items():
            # Similarly, compute the mean runtime for ``node``
            mean_runtime = statistics.mean(runtimes)
            # For easier understanding, we also compute the percentage
            # time each node took with respect to the whole network.
            pct_total = mean_runtime / mean_total_runtime * 100
            # Record the node's type, name of the node, mean runtime, and
            # percent runtime.
            node_summaries.append(
                [node.op, str(node), mean_runtime, pct_total])

        # One of the most important questions to answer when doing performance
        # profiling is "Which op(s) took the longest?". We can make this easy
        # to see by providing sorting functionality in our summary view
        if should_sort:
            node_summaries.sort(key=lambda s: s[2], reverse=True)

        # Use the ``tabulate`` library to create a well-formatted table
        # presenting our summary information
        headers : List[str] = [
            'Op type', 'Op', 'Average runtime (s)', 'Pct total runtime'
        ]
        return tabulate.tabulate(node_summaries, headers=headers)

注意

我们使用 Python 的 time.time 函数来获取挂钟时间戳并进行比较。这不是测量性能最精确的方法,只能给我们一个初步的近似值。我们仅为了本教程的演示目的而使用这种简单技术。

研究 ResNet18 的性能#

我们现在可以使用 ProfilingInterpreter 来检查我们的 ResNet18 模型的性能特征;

interp = ProfilingInterpreter(rn18)
interp.run(input)
print(interp.summary(True))
Op type        Op                       Average runtime (s)    Pct total runtime
-------------  ---------------------  ---------------------  -------------------
call_module    maxpool                          0.00455713             8.19317
call_module    conv1                            0.00452542             8.13616
call_module    layer4_0_conv2                   0.00322938             5.80603
call_module    layer4_1_conv1                   0.00296068             5.32294
call_module    layer4_1_conv2                   0.0028646              5.1502
call_module    layer1_0_conv1                   0.00285673             5.13605
call_module    layer1_0_conv2                   0.00283647             5.09962
call_module    layer1_1_conv2                   0.00257945             4.63754
call_module    layer2_1_conv2                   0.00231075             4.15445
call_module    layer1_1_conv1                   0.00228453             4.1073
call_module    layer3_1_conv1                   0.00217485             3.91012
call_module    layer3_0_conv2                   0.0021069              3.78796
call_module    layer2_1_conv1                   0.00205278             3.69065
call_module    layer3_1_conv2                   0.00205112             3.68765
call_module    layer2_0_conv2                   0.00203347             3.65593
call_module    layer4_0_conv1                   0.00182629             3.28344
call_module    layer3_0_conv1                   0.00165868             2.9821
call_module    bn1                              0.00134087             2.41071
call_module    layer2_0_conv1                   0.00128579             2.3117
call_module    layer2_0_downsample_0            0.000769615            1.38367
call_module    layer3_0_downsample_0            0.000460863            0.828575
call_module    layer4_0_downsample_0            0.000448465            0.806286
call_function  add                              0.000412226            0.741131
call_function  add_1                            0.000394344            0.708983
call_module    layer1_0_bn1                     0.000311375            0.559813
call_module    layer1_0_bn2                     0.000282764            0.508376
call_module    relu                             0.000280619            0.504518
call_module    layer1_1_bn2                     0.000271559            0.488229
call_function  add_3                            0.000256062            0.460367
call_module    layer2_0_bn1                     0.000194073            0.348919
call_module    fc                               0.000189066            0.339917
call_module    layer2_1_bn2                     0.000165462            0.297481
call_module    layer4_1_bn2                     0.000159979            0.287622
call_module    layer1_1_bn1                     0.000138998            0.249901
call_module    layer2_0_downsample_1            0.000130892            0.235327
call_module    avgpool                          0.000122786            0.220753
call_module    layer3_1_bn2                     0.000111818            0.201036
call_module    layer4_0_bn2                     0.000100136            0.180032
call_module    layer1_0_relu                    9.2268e-05             0.165887
call_module    layer1_0_relu_1                  9.08375e-05            0.163315
call_module    layer3_0_bn2                     9.01222e-05            0.162029
call_module    layer4_1_bn1                     8.84533e-05            0.159028
call_module    layer1_1_relu_1                  8.32081e-05            0.149598
call_module    layer2_0_bn2                     8.2016e-05             0.147455
call_module    layer2_1_bn1                     8.17776e-05            0.147026
call_function  add_2                            7.84397e-05            0.141025
call_function  add_5                            7.58171e-05            0.13631
call_module    layer4_0_downsample_1            7.39098e-05            0.132881
call_module    layer4_0_bn1                     7.15256e-05            0.128594
call_module    layer3_0_bn1                     7.03335e-05            0.126451
call_module    layer3_0_downsample_1            7.03335e-05            0.126451
call_module    layer1_1_relu                    6.81877e-05            0.122593
call_function  add_7                            6.65188e-05            0.119593
call_module    layer3_1_bn1                     6.62804e-05            0.119164
call_function  add_6                            6.10352e-05            0.109734
call_function  add_4                            5.48363e-05            0.0985889
call_module    layer4_1_relu                    5.26905e-05            0.0947311
call_module    layer2_0_relu                    4.98295e-05            0.0895873
call_module    layer2_1_relu_1                  4.79221e-05            0.0861581
call_module    layer4_0_relu                    4.72069e-05            0.0848722
call_module    layer4_0_relu_1                  4.52995e-05            0.081443
call_module    layer2_0_relu_1                  4.45843e-05            0.0801571
call_module    layer4_1_relu_1                  4.45843e-05            0.0801571
call_module    layer2_1_relu                    4.17233e-05            0.0750133
call_module    layer3_1_relu                    3.69549e-05            0.0664403
call_module    layer3_0_relu                    3.62396e-05            0.0651544
call_module    layer3_0_relu_1                  3.55244e-05            0.0638685
call_module    layer3_1_relu_1                  3.40939e-05            0.0612966
call_function  flatten                          2.57492e-05            0.0462939
placeholder    x                                2.24113e-05            0.0402929
output         output                           9.53674e-06            0.0171459

这里有两点需要指出:

结论#

正如我们所见,使用 FX 我们可以轻松地将 PyTorch 程序(甚至是我们没有源代码的程序!)捕获为机器可解释的格式,并用于分析,比如我们在这里所做的性能分析。FX 为处理 PyTorch 程序开辟了一个激动人心的可能性世界。

最后,由于 FX 仍处于测试阶段,我们非常乐意听到您关于使用它的任何反馈。请随时使用 PyTorch 论坛(https://discuss.pytorch.org/)和问题跟踪器(pytorch/pytorch#issues)提供您可能有的任何反馈。

脚本总运行时间: (0 分 0.303 秒)