评价此页

ONNX简介 || 将PyTorch模型导出到ONNX || 扩展ONNX导出器运算符支持 || `使用控制流将模型导出到ONNX

使用控制流将模型导出到ONNX#

作者: Xavier Dupré

概述#

本教程演示了在将PyTorch模型导出到ONNX时如何处理控制流逻辑。它强调了直接导出条件语句的挑战,并提供了绕过它们的解决方案。

除非使用 torch.cond() 进行重构,否则条件逻辑无法导出到ONNX。让我们从实现一个测试的简单模型开始。

您将学到什么

  • 如何重构模型以使用 torch.cond() 进行导出。

  • 如何将带有控制流逻辑的模型导出到ONNX。

  • 如何使用ONNX优化器优化导出的模型。

先决条件#

  • torch >= 2.6

import torch

定义模型#

定义了两个模型

ForwardWithControlFlowTest: 一个forward方法包含if-else条件的模型。

ModelWithControlFlowTest: 一个模型,它将 ForwardWithControlFlowTest 作为简单MLP的一部分。模型使用随机输入张量进行测试,以确认它们按预期执行。

class ForwardWithControlFlowTest(torch.nn.Module):
    def forward(self, x):
        if x.sum():
            return x * 2
        return -x


class ModelWithControlFlowTest(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(3, 2),
            torch.nn.Linear(2, 1),
            ForwardWithControlFlowTest(),
        )

    def forward(self, x):
        out = self.mlp(x)
        return out


model = ModelWithControlFlowTest()

导出模型:第一次尝试#

使用torch.export.export导出此模型会失败,因为forward pass中的控制流逻辑会创建一个图中断,导出器无法处理。这是预期的行为,因为未使用 torch.cond() 编写的条件逻辑不受支持。

使用try-except块捕获导出过程中预期的失败。如果导出意外成功,则会引发 AssertionError

x = torch.randn(3)
model(x)

try:
    torch.export.export(model, (x,), strict=False)
    raise AssertionError("This export should failed unless PyTorch now supports this model.")
except Exception as e:
    print(e)
def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
     # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:134 in forward, code: return F.linear(input, self.weight, self.bias)
    linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1);  arg4_1 = arg0_1 = arg1_1 = None
    linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1);  linear = arg2_1 = arg3_1 = None

     # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
    sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1);  linear_1 = None
    ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0);  sum_1 = None
    item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne);  ne = item = None




def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
     # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:134 in forward, code: return F.linear(input, self.weight, self.bias)
    linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1);  arg4_1 = arg0_1 = arg1_1 = None
    linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1);  linear = arg2_1 = arg3_1 = None

     # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
    sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1);  linear_1 = None
    ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0);  sum_1 = None
    item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne);  ne = item = None

Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)).  (Size-like symbols: none)

consider using data-dependent friendly APIs such as guard_or_false, guard_or_true and statically_known_trueCaused by: (_export/non_strict_utils.py:1066 in __torch_function__)
For more information, run with TORCH_LOGS="dynamic"
For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing

For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1

The following call raised this error:
  File "/var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py", line 56, in forward
    if x.sum():


The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.

建议的补丁:使用 torch.cond() 进行重构#

为了使控制流可导出,本教程演示了使用 torch.cond`() 重构的版本替换 ForwardWithControlFlowTest 中的forward方法。

重构细节

两个辅助函数(identity2和neg)代表条件逻辑的分支:* torch.cond`() 用于指定条件和两个分支以及输入参数。* 更新后的forward方法随后在模型内动态地分配给 ForwardWithControlFlowTest 实例。打印子模块列表以确认替换。

def new_forward(x):
    def identity2(x):
        return x * 2

    def neg(x):
        return -x

    return torch.cond(x.sum() > 0, identity2, neg, (x,))


print("the list of submodules")
for name, mod in model.named_modules():
    print(name, type(mod))
    if isinstance(mod, ForwardWithControlFlowTest):
        mod.forward = new_forward
the list of submodules
 <class '__main__.ModelWithControlFlowTest'>
mlp <class 'torch.nn.modules.container.Sequential'>
mlp.0 <class 'torch.nn.modules.linear.Linear'>
mlp.1 <class 'torch.nn.modules.linear.Linear'>
mlp.2 <class '__main__.ForwardWithControlFlowTest'>

让我们看看FX图的样子。

print(torch.export.export(model, (x,), strict=False))
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, p_mlp_0_weight: "f32[2, 3]", p_mlp_0_bias: "f32[2]", p_mlp_1_weight: "f32[1, 2]", p_mlp_1_bias: "f32[1]", x: "f32[3]"):
             # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:134 in forward, code: return F.linear(input, self.weight, self.bias)
            linear: "f32[2]" = torch.ops.aten.linear.default(x, p_mlp_0_weight, p_mlp_0_bias);  x = p_mlp_0_weight = p_mlp_0_bias = None
            linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, p_mlp_1_weight, p_mlp_1_bias);  linear = p_mlp_1_weight = p_mlp_1_bias = None

             # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/container.py:250 in forward, code: input = module(input)
            sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1)
            gt: "b8[]" = torch.ops.aten.gt.Scalar(sum_1, 0);  sum_1 = None

             # File: <eval_with_key>.3:9 in forward, code: cond = torch.ops.higher_order.cond(l_args_0_, cond_true_0, cond_false_0, (l_args_3_0_,));  l_args_0_ = cond_true_0 = cond_false_0 = l_args_3_0_ = None
            true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (linear_1,));  gt = true_graph_0 = false_graph_0 = linear_1 = None
            getitem: "f32[1]" = cond[0];  cond = None
            return (getitem,)

        class true_graph_0(torch.nn.Module):
            def forward(self, linear_1: "f32[1]"):
                 # File: <eval_with_key>.0:6 in forward, code: mul = l_args_3_0__1 * 2;  l_args_3_0__1 = None
                mul: "f32[1]" = torch.ops.aten.mul.Tensor(linear_1, 2);  linear_1 = None
                return (mul,)

        class false_graph_0(torch.nn.Module):
            def forward(self, linear_1: "f32[1]"):
                 # File: <eval_with_key>.1:6 in forward, code: neg = -l_args_3_0__1;  l_args_3_0__1 = None
                neg: "f32[1]" = torch.ops.aten.neg.default(linear_1);  linear_1 = None
                return (neg,)

Graph signature:
    # inputs
    p_mlp_0_weight: PARAMETER target='mlp.0.weight'
    p_mlp_0_bias: PARAMETER target='mlp.0.bias'
    p_mlp_1_weight: PARAMETER target='mlp.1.weight'
    p_mlp_1_bias: PARAMETER target='mlp.1.bias'
    x: USER_INPUT

    # outputs
    getitem: USER_OUTPUT

Range constraints: {}

让我们再次导出。

onnx_program = torch.onnx.export(model, (x,), dynamo=True)
print(onnx_program.model)
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
<
    ir_version=10,
    opset_imports={'': 20},
    producer_name='pytorch',
    producer_version='2.9.0+cu128',
    domain=None,
    model_version=None,
>
graph(
    name=main_graph,
    inputs=(
        %"x"<FLOAT,[3]>
    ),
    outputs=(
        %"getitem"<FLOAT,[1]>
    ),
    initializers=(
        %"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([0.1949, 0.2263], requires_grad=True), name='mlp.0.bias')},
        %"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.4595], requires_grad=True), name='mlp.1.bias')},
        %"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.03271979,  0.5771984 ], [ 0.48856184, -0.1434506 ], [ 0.53982925, -0.26834208]], dtype=float32), name='val_0')},
        %"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.6689668 ], [ 0.59571433]], dtype=float32), name='val_2')},
        %"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(0., dtype=float32), name='scalar_tensor_default')},
        %"scalar_tensor_default_2"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default_2')}
    ),
) {
    0 |  # node_MatMul_1
         %"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.03271978721022606, 0.5771983861923218], [0.48856183886528015, -0.14345060288906097], [0.5398292541503906, -0.2683420777320862]]})
    1 |  # node_linear
         %"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.19491833448410034, 0.22633221745491028]})
    2 |  # node_MatMul_3
         %"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.6689668297767639], [0.5957143306732178]]})
    3 |  # node_linear_1
         %"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.45953357219696045]})
    4 |  # node_sum_1
         %"sum_1"<FLOAT,[]> ⬅️ ::ReduceSum(%"linear_1") {noop_with_empty_axes=0, keepdims=0}
    5 |  # node_gt
         %"gt"<BOOL,[]> ⬅️ ::Greater(%"sum_1", %"scalar_tensor_default"{0.0})
    6 |  # node_cond__0
         %"getitem"<FLOAT,[1]> ⬅️ ::If(%"gt") {then_branch=
             graph(
                 name=true_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"mul_true_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_mul
                      %"mul_true_graph_0"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default_2"{2.0})
                 return %"mul_true_graph_0"<FLOAT,[1]>
             }, else_branch=
             graph(
                 name=false_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"neg_false_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_neg
                      %"neg_false_graph_0"<FLOAT,[1]> ⬅️ ::Neg(%"linear_1")
                 return %"neg_false_graph_0"<FLOAT,[1]>
             }}
    return %"getitem"<FLOAT,[1]>
}

我们可以优化模型并删除为捕获控制流分支而创建的模型本地函数。

<
    ir_version=10,
    opset_imports={'': 20},
    producer_name='pytorch',
    producer_version='2.9.0+cu128',
    domain=None,
    model_version=None,
>
graph(
    name=main_graph,
    inputs=(
        %"x"<FLOAT,[3]>
    ),
    outputs=(
        %"getitem"<FLOAT,[1]>
    ),
    initializers=(
        %"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([0.1949, 0.2263], requires_grad=True), name='mlp.0.bias')},
        %"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.4595], requires_grad=True), name='mlp.1.bias')},
        %"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.03271979,  0.5771984 ], [ 0.48856184, -0.1434506 ], [ 0.53982925, -0.26834208]], dtype=float32), name='val_0')},
        %"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.6689668 ], [ 0.59571433]], dtype=float32), name='val_2')},
        %"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(0., dtype=float32), name='scalar_tensor_default')},
        %"scalar_tensor_default_2"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default_2')}
    ),
) {
    0 |  # node_MatMul_1
         %"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.03271978721022606, 0.5771983861923218], [0.48856183886528015, -0.14345060288906097], [0.5398292541503906, -0.2683420777320862]]})
    1 |  # node_linear
         %"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.19491833448410034, 0.22633221745491028]})
    2 |  # node_MatMul_3
         %"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.6689668297767639], [0.5957143306732178]]})
    3 |  # node_linear_1
         %"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.45953357219696045]})
    4 |  # node_sum_1
         %"sum_1"<FLOAT,[]> ⬅️ ::ReduceSum(%"linear_1") {noop_with_empty_axes=0, keepdims=0}
    5 |  # node_gt
         %"gt"<BOOL,[]> ⬅️ ::Greater(%"sum_1", %"scalar_tensor_default"{0.0})
    6 |  # node_cond__0
         %"getitem"<FLOAT,[1]> ⬅️ ::If(%"gt") {then_branch=
             graph(
                 name=true_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"mul_true_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_mul
                      %"mul_true_graph_0"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default_2"{2.0})
                 return %"mul_true_graph_0"<FLOAT,[1]>
             }, else_branch=
             graph(
                 name=false_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"neg_false_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_neg
                      %"neg_false_graph_0"<FLOAT,[1]> ⬅️ ::Neg(%"linear_1")
                 return %"neg_false_graph_0"<FLOAT,[1]>
             }}
    return %"getitem"<FLOAT,[1]>
}

结论#

本教程演示了将带有条件逻辑的模型导出到ONNX的挑战,并使用 torch.cond() 提供了一个实际的解决方案。虽然默认导出器可能会失败或生成不完美的图,但重构模型的逻辑可确保兼容性并生成忠实的ONNX表示。

通过理解这些技术,我们可以克服在PyTorch模型中使用控制流时的常见陷阱,并确保与ONNX工作流程的顺畅集成。

延伸阅读#

下面的列表引用了从基本示例到高级场景的教程,不一定按列出的顺序。您可以随时跳转到您感兴趣的特定主题,或者坐下来,享受学习 ONNX 导出器所有知识的乐趣。

脚本总运行时间: (0分钟 6.284秒)