评价此页

ONNX 简介 || 将 PyTorch 模型导出到 ONNX || 扩展 ONNX 导出器的算子支持 || 将带有控制流的模型导出到 ONNX

将带有控制流的模型导出到 ONNX#

作者: Xavier Dupré

概述#

本教程演示了在将 PyTorch 模型导出到 ONNX 时如何处理控制流逻辑。它强调了直接导出条件语句所面临的挑战,并提供了规避这些挑战的解决方案。

条件逻辑无法导出到 ONNX,除非将其重构为使用 torch.cond()。让我们从一个实现测试的简单模型开始。

您将学到什么

  • 如何重构模型以使用 torch.cond() 进行导出。

  • 如何将带有控制流逻辑的模型导出到 ONNX。

  • 如何使用 ONNX 优化器优化导出的模型。

先决条件#

  • torch >= 2.6

import torch

定义模型#

定义了两个模型

ForwardWithControlFlowTest:一个其 forward 方法包含 if-else 条件的模型。

ModelWithControlFlowTest:一个将 ForwardWithControlFlowTest 作为简单 MLP 一部分的模型。这些模型使用随机输入张量进行测试,以确认它们按预期执行。

class ForwardWithControlFlowTest(torch.nn.Module):
    def forward(self, x):
        if x.sum():
            return x * 2
        return -x


class ModelWithControlFlowTest(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.mlp = torch.nn.Sequential(
            torch.nn.Linear(3, 2),
            torch.nn.Linear(2, 1),
            ForwardWithControlFlowTest(),
        )

    def forward(self, x):
        out = self.mlp(x)
        return out


model = ModelWithControlFlowTest()

导出模型:首次尝试#

使用 torch.export.export 导出此模型失败,因为前向传播中的控制流逻辑创建了导出器无法处理的图中断。这种行为是预期的,因为未使用 torch.cond() 编写的条件逻辑是不支持的。

使用 try-except 块来捕获导出过程中预期的失败。如果导出意外成功,则会引发 AssertionError

x = torch.randn(3)
model(x)

try:
    torch.export.export(model, (x,), strict=False)
    raise AssertionError("This export should failed unless PyTorch now supports this model.")
except Exception as e:
    print(e)
def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
     # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
    linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1);  arg4_1 = arg0_1 = arg1_1 = None
    linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1);  linear = arg2_1 = arg3_1 = None

     # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
    sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1);  linear_1 = None
    ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0);  sum_1 = None
    item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne);  ne = item = None




def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
     # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
    linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1);  arg4_1 = arg0_1 = arg1_1 = None
    linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1);  linear = arg2_1 = arg3_1 = None

     # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
    sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1);  linear_1 = None
    ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0);  sum_1 = None
    item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne);  ne = item = None

Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)).  (Size-like symbols: none)

Caused by: (_export/non_strict_utils.py:1051 in __torch_function__)
For more information, run with TORCH_LOGS="dynamic"
For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing

For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1

The following call raised this error:
  File "/var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py", line 56, in forward
    if x.sum():


The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.

使用 torch.onnx.export() 进行 JIT 跟踪#

当使用带有 dynamo=True 参数的 torch.onnx.export() 导出模型时,导出器默认使用 JIT 跟踪。这种回退机制允许模型导出,但由于跟踪的局限性,生成的 ONNX 图可能无法忠实地表示原始模型的逻辑。

onnx_program = torch.onnx.export(model, (x,), dynamo=True)
print(onnx_program.model)
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`...



def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
     # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
    linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1);  arg4_1 = arg0_1 = arg1_1 = None
    linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1);  linear = arg2_1 = arg3_1 = None

     # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
    sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1);  linear_1 = None
    ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0);  sum_1 = None
    item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne);  ne = item = None




def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
     # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
    linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1);  arg4_1 = arg0_1 = arg1_1 = None
    linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1);  linear = arg2_1 = arg3_1 = None

     # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
    sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1);  linear_1 = None
    ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0);  sum_1 = None
    item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne);  ne = item = None

[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`... ❌
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=True)`...
class GraphModule(torch.nn.Module):
    def forward(self, L_x_: "f32[3][1]cpu"):
        l_x_ = L_x_

         # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:71 in forward, code: out = self.mlp(x)
        l__self___mlp_0: "f32[2][1]cpu" = self.L__self___mlp_0(l_x_);  l_x_ = None
        l__self___mlp_1: "f32[1][1]cpu" = self.L__self___mlp_1(l__self___mlp_0);  l__self___mlp_0 = None

         # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
        sum_1: "f32[][]cpu" = l__self___mlp_1.sum();  l__self___mlp_1 = sum_1 = None

class GraphModule(torch.nn.Module):
    def forward(self, L_x_: "f32[3][1]cpu"):
        l_x_ = L_x_

         # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:71 in forward, code: out = self.mlp(x)
        l__self___mlp_0: "f32[2][1]cpu" = self.L__self___mlp_0(l_x_);  l_x_ = None
        l__self___mlp_1: "f32[1][1]cpu" = self.L__self___mlp_1(l__self___mlp_0);  l__self___mlp_0 = None

         # File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
        sum_1: "f32[][]cpu" = l__self___mlp_1.sum();  l__self___mlp_1 = sum_1 = None

[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=True)`... ❌
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export draft_export`...
[torch.onnx] Draft Export report:

###################################################################################################
WARNING: 1 issue(s) found during export, and it was not able to soundly produce a graph.
Please follow the instructions to fix the errors.
###################################################################################################

1. Data dependent error.
    When exporting, we were unable to evaluate the value of `Eq(u0, 1)`.
    This was encountered 1 times.
    This occurred at the following user stacktrace:
        File /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py, lineno 1773, in _wrapped_call_impl
        File /usr/local/lib/python3.10/dist-packages/torch/nn/modules/module.py, lineno 1784, in _call_impl
            if x.sum():

        Locals:
            x: ['Tensor(shape: torch.Size([1]), stride: (1,), storage_offset: 0)']

    And the following framework stacktrace:
        File /usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py, lineno 1360, in __torch_function__
        File /usr/local/lib/python3.10/dist-packages/torch/fx/experimental/proxy_tensor.py, lineno 1407, in __torch_function__
            return func(*args, **kwargs)

    As a result, it was specialized to a constant (e.g. `1` in the 1st occurrence), and asserts were inserted into the graph.

    Please add `torch._check(...)` to the original code to assert this data-dependent assumption.
    Please refer to https://docs.google.com/document/d/1kZ_BbB3JnoLbUZleDT6635dHs88ZVYId8jT-yTFgf3A/edit#heading=h.boi2xurpqa0o for more details.


[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export draft_export`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
<
    ir_version=10,
    opset_imports={'': 18},
    producer_name='pytorch',
    producer_version='2.8.0+cu128',
    domain=None,
    model_version=None,
>
graph(
    name=main_graph,
    inputs=(
        %"x"<FLOAT,[3]>
    ),
    outputs=(
        %"mul"<FLOAT,[1]>
    ),
    initializers=(
        %"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([ 0.1817, -0.4669], requires_grad=True), name='mlp.0.bias')},
        %"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.3096], requires_grad=True), name='mlp.1.bias')},
        %"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.02091814,  0.06923048], [ 0.20628652, -0.1461392 ], [-0.05838434, -0.20525895]], dtype=float32), name='val_0')},
        %"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.1529778 ], [-0.41561294]], dtype=float32), name='val_2')},
        %"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default')}
    ),
) {
    0 |  # node_MatMul_1
         %"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.020918138325214386, 0.06923048198223114], [0.20628651976585388, -0.1461392045021057], [-0.05838434025645256, -0.20525895059108734]]})
    1 |  # node_linear
         %"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.1816701740026474, -0.4669439494609833]})
    2 |  # node_MatMul_3
         %"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.15297779440879822], [-0.41561293601989746]]})
    3 |  # node_linear_1
         %"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.30958300828933716]})
    4 |  # node_mul
         %"mul"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default"{2.0})
    return %"mul"<FLOAT,[1]>
}

建议的补丁:使用 torch.cond() 进行重构#

为了使控制流可导出,本教程演示了如何将 ForwardWithControlFlowTest 中的 forward 方法替换为一个使用 torch.cond`() 的重构版本。

重构详情

两个辅助函数(identity2 和 neg)代表了条件逻辑的分支:* 使用 torch.cond`() 来指定条件和两个分支以及输入参数。* 然后将更新后的 forward 方法动态分配给模型内的 ForwardWithControlFlowTest 实例。打印子模块列表以确认替换。

def new_forward(x):
    def identity2(x):
        return x * 2

    def neg(x):
        return -x

    return torch.cond(x.sum() > 0, identity2, neg, (x,))


print("the list of submodules")
for name, mod in model.named_modules():
    print(name, type(mod))
    if isinstance(mod, ForwardWithControlFlowTest):
        mod.forward = new_forward
the list of submodules
 <class '__main__.ModelWithControlFlowTest'>
mlp <class 'torch.nn.modules.container.Sequential'>
mlp.0 <class 'torch.nn.modules.linear.Linear'>
mlp.1 <class 'torch.nn.modules.linear.Linear'>
mlp.2 <class '__main__.ForwardWithControlFlowTest'>

让我们看看 FX 图是什么样子的。

print(torch.export.export(model, (x,), strict=False))
ExportedProgram:
    class GraphModule(torch.nn.Module):
        def forward(self, p_mlp_0_weight: "f32[2, 3]", p_mlp_0_bias: "f32[2]", p_mlp_1_weight: "f32[1, 2]", p_mlp_1_bias: "f32[1]", x: "f32[3]"):
             # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:125 in forward, code: return F.linear(input, self.weight, self.bias)
            linear: "f32[2]" = torch.ops.aten.linear.default(x, p_mlp_0_weight, p_mlp_0_bias);  x = p_mlp_0_weight = p_mlp_0_bias = None
            linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, p_mlp_1_weight, p_mlp_1_bias);  linear = p_mlp_1_weight = p_mlp_1_bias = None

             # File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/container.py:244 in forward, code: input = module(input)
            sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1)
            gt: "b8[]" = torch.ops.aten.gt.Scalar(sum_1, 0);  sum_1 = None

             # File: <eval_with_key>.25:9 in forward, code: cond = torch.ops.higher_order.cond(l_args_0_, cond_true_0, cond_false_0, (l_args_3_0_,));  l_args_0_ = cond_true_0 = cond_false_0 = l_args_3_0_ = None
            true_graph_0 = self.true_graph_0
            false_graph_0 = self.false_graph_0
            cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (linear_1,));  gt = true_graph_0 = false_graph_0 = linear_1 = None
            getitem: "f32[1]" = cond[0];  cond = None
            return (getitem,)

        class true_graph_0(torch.nn.Module):
            def forward(self, linear_1: "f32[1]"):
                 # File: <eval_with_key>.22:6 in forward, code: mul = l_args_3_0__1.mul(2);  l_args_3_0__1 = None
                mul: "f32[1]" = torch.ops.aten.mul.Tensor(linear_1, 2);  linear_1 = None
                return (mul,)

        class false_graph_0(torch.nn.Module):
            def forward(self, linear_1: "f32[1]"):
                 # File: <eval_with_key>.23:6 in forward, code: neg = l_args_3_0__1.neg();  l_args_3_0__1 = None
                neg: "f32[1]" = torch.ops.aten.neg.default(linear_1);  linear_1 = None
                return (neg,)

Graph signature:
    # inputs
    p_mlp_0_weight: PARAMETER target='mlp.0.weight'
    p_mlp_0_bias: PARAMETER target='mlp.0.bias'
    p_mlp_1_weight: PARAMETER target='mlp.1.weight'
    p_mlp_1_bias: PARAMETER target='mlp.1.bias'
    x: USER_INPUT

    # outputs
    getitem: USER_OUTPUT

Range constraints: {}

让我们再次导出。

onnx_program = torch.onnx.export(model, (x,), dynamo=True)
print(onnx_program.model)
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
<
    ir_version=10,
    opset_imports={'': 18},
    producer_name='pytorch',
    producer_version='2.8.0+cu128',
    domain=None,
    model_version=None,
>
graph(
    name=main_graph,
    inputs=(
        %"x"<FLOAT,[3]>
    ),
    outputs=(
        %"getitem"<FLOAT,[1]>
    ),
    initializers=(
        %"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([ 0.1817, -0.4669], requires_grad=True), name='mlp.0.bias')},
        %"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.3096], requires_grad=True), name='mlp.1.bias')},
        %"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.02091814,  0.06923048], [ 0.20628652, -0.1461392 ], [-0.05838434, -0.20525895]], dtype=float32), name='val_0')},
        %"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.1529778 ], [-0.41561294]], dtype=float32), name='val_2')},
        %"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(0., dtype=float32), name='scalar_tensor_default')},
        %"scalar_tensor_default_2"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default_2')}
    ),
) {
    0 |  # node_MatMul_1
         %"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.020918138325214386, 0.06923048198223114], [0.20628651976585388, -0.1461392045021057], [-0.05838434025645256, -0.20525895059108734]]})
    1 |  # node_linear
         %"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.1816701740026474, -0.4669439494609833]})
    2 |  # node_MatMul_3
         %"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.15297779440879822], [-0.41561293601989746]]})
    3 |  # node_linear_1
         %"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.30958300828933716]})
    4 |  # node_sum_1
         %"sum_1"<FLOAT,[]> ⬅️ ::ReduceSum(%"linear_1") {noop_with_empty_axes=0, keepdims=False}
    5 |  # node_gt
         %"gt"<BOOL,[]> ⬅️ ::Greater(%"sum_1", %"scalar_tensor_default"{0.0})
    6 |  # node_cond__0
         %"getitem"<FLOAT,[1]> ⬅️ ::If(%"gt") {then_branch=
             graph(
                 name=true_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"mul_true_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_mul
                      %"mul_true_graph_0"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default_2"{2.0})
                 return %"mul_true_graph_0"<FLOAT,[1]>
             }, else_branch=
             graph(
                 name=false_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"neg_false_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_neg
                      %"neg_false_graph_0"<FLOAT,[1]> ⬅️ ::Neg(%"linear_1")
                 return %"neg_false_graph_0"<FLOAT,[1]>
             }}
    return %"getitem"<FLOAT,[1]>
}

我们可以优化模型,并去除为捕获控制流分支而创建的模型局部函数。

<
    ir_version=10,
    opset_imports={'': 18},
    producer_name='pytorch',
    producer_version='2.8.0+cu128',
    domain=None,
    model_version=None,
>
graph(
    name=main_graph,
    inputs=(
        %"x"<FLOAT,[3]>
    ),
    outputs=(
        %"getitem"<FLOAT,[1]>
    ),
    initializers=(
        %"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([ 0.1817, -0.4669], requires_grad=True), name='mlp.0.bias')},
        %"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.3096], requires_grad=True), name='mlp.1.bias')},
        %"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.02091814,  0.06923048], [ 0.20628652, -0.1461392 ], [-0.05838434, -0.20525895]], dtype=float32), name='val_0')},
        %"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.1529778 ], [-0.41561294]], dtype=float32), name='val_2')},
        %"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(0., dtype=float32), name='scalar_tensor_default')},
        %"scalar_tensor_default_2"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default_2')}
    ),
) {
    0 |  # node_MatMul_1
         %"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.020918138325214386, 0.06923048198223114], [0.20628651976585388, -0.1461392045021057], [-0.05838434025645256, -0.20525895059108734]]})
    1 |  # node_linear
         %"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.1816701740026474, -0.4669439494609833]})
    2 |  # node_MatMul_3
         %"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.15297779440879822], [-0.41561293601989746]]})
    3 |  # node_linear_1
         %"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.30958300828933716]})
    4 |  # node_sum_1
         %"sum_1"<FLOAT,[]> ⬅️ ::ReduceSum(%"linear_1") {noop_with_empty_axes=0, keepdims=False}
    5 |  # node_gt
         %"gt"<BOOL,[]> ⬅️ ::Greater(%"sum_1", %"scalar_tensor_default"{0.0})
    6 |  # node_cond__0
         %"getitem"<FLOAT,[1]> ⬅️ ::If(%"gt") {then_branch=
             graph(
                 name=true_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"mul_true_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_mul
                      %"mul_true_graph_0"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default_2"{2.0})
                 return %"mul_true_graph_0"<FLOAT,[1]>
             }, else_branch=
             graph(
                 name=false_graph_0,
                 inputs=(

                 ),
                 outputs=(
                     %"neg_false_graph_0"<FLOAT,[1]>
                 ),
             ) {
                 0 |  # node_neg
                      %"neg_false_graph_0"<FLOAT,[1]> ⬅️ ::Neg(%"linear_1")
                 return %"neg_false_graph_0"<FLOAT,[1]>
             }}
    return %"getitem"<FLOAT,[1]>
}

结论#

本教程演示了将带有条件逻辑的模型导出到 ONNX 的挑战,并提出了使用 torch.cond() 的实用解决方案。虽然默认的导出器可能会失败或产生不完美的图,但重构模型的逻辑可以确保兼容性并生成一个忠实的 ONNX 表示。

通过理解这些技术,我们可以克服在处理 PyTorch 模型中的控制流时常见的陷阱,并确保与 ONNX 工作流的顺利集成。

延伸阅读#

下面的列表引用了从基础示例到高级场景的教程,不一定按所列顺序排列。您可以随时直接跳转到您感兴趣的特定主题,或者坐下来享受完整学习 ONNX 导出器所有内容的过程。

脚本总运行时间: (0 分 2.895 秒)