注意
转到末尾 下载完整的示例代码。
ONNX简介 || 将PyTorch模型导出到ONNX || 扩展ONNX导出器运算符支持 || `使用控制流将模型导出到ONNX
使用控制流将模型导出到ONNX#
作者: Xavier Dupré
概述#
本教程演示了在将PyTorch模型导出到ONNX时如何处理控制流逻辑。它强调了直接导出条件语句的挑战,并提供了绕过它们的解决方案。
除非使用 torch.cond() 进行重构,否则条件逻辑无法导出到ONNX。让我们从实现一个测试的简单模型开始。
您将学到什么
如何重构模型以使用
torch.cond()进行导出。如何将带有控制流逻辑的模型导出到ONNX。
如何使用ONNX优化器优化导出的模型。
先决条件#
torch >= 2.6
import torch
定义模型#
定义了两个模型
ForwardWithControlFlowTest: 一个forward方法包含if-else条件的模型。
ModelWithControlFlowTest: 一个模型,它将 ForwardWithControlFlowTest 作为简单MLP的一部分。模型使用随机输入张量进行测试,以确认它们按预期执行。
class ForwardWithControlFlowTest(torch.nn.Module):
def forward(self, x):
if x.sum():
return x * 2
return -x
class ModelWithControlFlowTest(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp = torch.nn.Sequential(
torch.nn.Linear(3, 2),
torch.nn.Linear(2, 1),
ForwardWithControlFlowTest(),
)
def forward(self, x):
out = self.mlp(x)
return out
model = ModelWithControlFlowTest()
导出模型:第一次尝试#
使用torch.export.export导出此模型会失败,因为forward pass中的控制流逻辑会创建一个图中断,导出器无法处理。这是预期的行为,因为未使用 torch.cond() 编写的条件逻辑不受支持。
使用try-except块捕获导出过程中预期的失败。如果导出意外成功,则会引发 AssertionError。
x = torch.randn(3)
model(x)
try:
torch.export.export(model, (x,), strict=False)
raise AssertionError("This export should failed unless PyTorch now supports this model.")
except Exception as e:
print(e)
def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
# File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:134 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1); arg4_1 = arg0_1 = arg1_1 = None
linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1); linear = arg2_1 = arg3_1 = None
# File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1); linear_1 = None
ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0); sum_1 = None
item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne); ne = item = None
def forward(self, arg0_1: "f32[2, 3]", arg1_1: "f32[2]", arg2_1: "f32[1, 2]", arg3_1: "f32[1]", arg4_1: "f32[3]"):
# File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:134 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[2]" = torch.ops.aten.linear.default(arg4_1, arg0_1, arg1_1); arg4_1 = arg0_1 = arg1_1 = None
linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, arg2_1, arg3_1); linear = arg2_1 = arg3_1 = None
# File: /var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py:56 in forward, code: if x.sum():
sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1); linear_1 = None
ne: "b8[]" = torch.ops.aten.ne.Scalar(sum_1, 0); sum_1 = None
item: "Sym(Eq(u0, 1))" = torch.ops.aten.item.default(ne); ne = item = None
Could not guard on data-dependent expression Eq(u0, 1) (unhinted: Eq(u0, 1)). (Size-like symbols: none)
consider using data-dependent friendly APIs such as guard_or_false, guard_or_true and statically_known_trueCaused by: (_export/non_strict_utils.py:1066 in __torch_function__)
For more information, run with TORCH_LOGS="dynamic"
For extended logs when we create symbols, also add TORCHDYNAMO_EXTENDED_DEBUG_CREATE_SYMBOL="u0"
If you suspect the guard was triggered from C++, add TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
For more debugging help, see https://docs.google.com/document/d/1HSuTTVvYH1pTew89Rtpeu84Ht3nQEFTYhAX3Ypa_xJs/edit?usp=sharing
For C++ stack trace, run with TORCHDYNAMO_EXTENDED_DEBUG_CPP=1
The following call raised this error:
File "/var/lib/workspace/beginner_source/onnx/export_control_flow_model_to_onnx_tutorial.py", line 56, in forward
if x.sum():
The error above occurred when calling torch.export.export. If you would like to view some more information about this error, and get a list of all other errors that may occur in your export call, you can replace your `export()` call with `draft_export()`.
建议的补丁:使用 torch.cond() 进行重构#
为了使控制流可导出,本教程演示了使用 torch.cond`() 重构的版本替换 ForwardWithControlFlowTest 中的forward方法。
重构细节
两个辅助函数(identity2和neg)代表条件逻辑的分支:* torch.cond`() 用于指定条件和两个分支以及输入参数。* 更新后的forward方法随后在模型内动态地分配给 ForwardWithControlFlowTest 实例。打印子模块列表以确认替换。
def new_forward(x):
def identity2(x):
return x * 2
def neg(x):
return -x
return torch.cond(x.sum() > 0, identity2, neg, (x,))
print("the list of submodules")
for name, mod in model.named_modules():
print(name, type(mod))
if isinstance(mod, ForwardWithControlFlowTest):
mod.forward = new_forward
the list of submodules
<class '__main__.ModelWithControlFlowTest'>
mlp <class 'torch.nn.modules.container.Sequential'>
mlp.0 <class 'torch.nn.modules.linear.Linear'>
mlp.1 <class 'torch.nn.modules.linear.Linear'>
mlp.2 <class '__main__.ForwardWithControlFlowTest'>
让我们看看FX图的样子。
print(torch.export.export(model, (x,), strict=False))
ExportedProgram:
class GraphModule(torch.nn.Module):
def forward(self, p_mlp_0_weight: "f32[2, 3]", p_mlp_0_bias: "f32[2]", p_mlp_1_weight: "f32[1, 2]", p_mlp_1_bias: "f32[1]", x: "f32[3]"):
# File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/linear.py:134 in forward, code: return F.linear(input, self.weight, self.bias)
linear: "f32[2]" = torch.ops.aten.linear.default(x, p_mlp_0_weight, p_mlp_0_bias); x = p_mlp_0_weight = p_mlp_0_bias = None
linear_1: "f32[1]" = torch.ops.aten.linear.default(linear, p_mlp_1_weight, p_mlp_1_bias); linear = p_mlp_1_weight = p_mlp_1_bias = None
# File: /usr/local/lib/python3.10/dist-packages/torch/nn/modules/container.py:250 in forward, code: input = module(input)
sum_1: "f32[]" = torch.ops.aten.sum.default(linear_1)
gt: "b8[]" = torch.ops.aten.gt.Scalar(sum_1, 0); sum_1 = None
# File: <eval_with_key>.3:9 in forward, code: cond = torch.ops.higher_order.cond(l_args_0_, cond_true_0, cond_false_0, (l_args_3_0_,)); l_args_0_ = cond_true_0 = cond_false_0 = l_args_3_0_ = None
true_graph_0 = self.true_graph_0
false_graph_0 = self.false_graph_0
cond = torch.ops.higher_order.cond(gt, true_graph_0, false_graph_0, (linear_1,)); gt = true_graph_0 = false_graph_0 = linear_1 = None
getitem: "f32[1]" = cond[0]; cond = None
return (getitem,)
class true_graph_0(torch.nn.Module):
def forward(self, linear_1: "f32[1]"):
# File: <eval_with_key>.0:6 in forward, code: mul = l_args_3_0__1 * 2; l_args_3_0__1 = None
mul: "f32[1]" = torch.ops.aten.mul.Tensor(linear_1, 2); linear_1 = None
return (mul,)
class false_graph_0(torch.nn.Module):
def forward(self, linear_1: "f32[1]"):
# File: <eval_with_key>.1:6 in forward, code: neg = -l_args_3_0__1; l_args_3_0__1 = None
neg: "f32[1]" = torch.ops.aten.neg.default(linear_1); linear_1 = None
return (neg,)
Graph signature:
# inputs
p_mlp_0_weight: PARAMETER target='mlp.0.weight'
p_mlp_0_bias: PARAMETER target='mlp.0.bias'
p_mlp_1_weight: PARAMETER target='mlp.1.weight'
p_mlp_1_bias: PARAMETER target='mlp.1.bias'
x: USER_INPUT
# outputs
getitem: USER_OUTPUT
Range constraints: {}
让我们再次导出。
onnx_program = torch.onnx.export(model, (x,), dynamo=True)
print(onnx_program.model)
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`...
[torch.onnx] Obtain model graph for `ModelWithControlFlowTest([...]` with `torch.export.export(..., strict=False)`... ✅
[torch.onnx] Run decomposition...
[torch.onnx] Run decomposition... ✅
[torch.onnx] Translate the graph into ONNX...
[torch.onnx] Translate the graph into ONNX... ✅
<
ir_version=10,
opset_imports={'': 20},
producer_name='pytorch',
producer_version='2.9.0+cu128',
domain=None,
model_version=None,
>
graph(
name=main_graph,
inputs=(
%"x"<FLOAT,[3]>
),
outputs=(
%"getitem"<FLOAT,[1]>
),
initializers=(
%"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([0.1949, 0.2263], requires_grad=True), name='mlp.0.bias')},
%"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.4595], requires_grad=True), name='mlp.1.bias')},
%"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.03271979, 0.5771984 ], [ 0.48856184, -0.1434506 ], [ 0.53982925, -0.26834208]], dtype=float32), name='val_0')},
%"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.6689668 ], [ 0.59571433]], dtype=float32), name='val_2')},
%"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(0., dtype=float32), name='scalar_tensor_default')},
%"scalar_tensor_default_2"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default_2')}
),
) {
0 | # node_MatMul_1
%"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.03271978721022606, 0.5771983861923218], [0.48856183886528015, -0.14345060288906097], [0.5398292541503906, -0.2683420777320862]]})
1 | # node_linear
%"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.19491833448410034, 0.22633221745491028]})
2 | # node_MatMul_3
%"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.6689668297767639], [0.5957143306732178]]})
3 | # node_linear_1
%"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.45953357219696045]})
4 | # node_sum_1
%"sum_1"<FLOAT,[]> ⬅️ ::ReduceSum(%"linear_1") {noop_with_empty_axes=0, keepdims=0}
5 | # node_gt
%"gt"<BOOL,[]> ⬅️ ::Greater(%"sum_1", %"scalar_tensor_default"{0.0})
6 | # node_cond__0
%"getitem"<FLOAT,[1]> ⬅️ ::If(%"gt") {then_branch=
graph(
name=true_graph_0,
inputs=(
),
outputs=(
%"mul_true_graph_0"<FLOAT,[1]>
),
) {
0 | # node_mul
%"mul_true_graph_0"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default_2"{2.0})
return %"mul_true_graph_0"<FLOAT,[1]>
}, else_branch=
graph(
name=false_graph_0,
inputs=(
),
outputs=(
%"neg_false_graph_0"<FLOAT,[1]>
),
) {
0 | # node_neg
%"neg_false_graph_0"<FLOAT,[1]> ⬅️ ::Neg(%"linear_1")
return %"neg_false_graph_0"<FLOAT,[1]>
}}
return %"getitem"<FLOAT,[1]>
}
我们可以优化模型并删除为捕获控制流分支而创建的模型本地函数。
onnx_program.optimize()
print(onnx_program.model)
<
ir_version=10,
opset_imports={'': 20},
producer_name='pytorch',
producer_version='2.9.0+cu128',
domain=None,
model_version=None,
>
graph(
name=main_graph,
inputs=(
%"x"<FLOAT,[3]>
),
outputs=(
%"getitem"<FLOAT,[1]>
),
initializers=(
%"mlp.0.bias"<FLOAT,[2]>{TorchTensor<FLOAT,[2]>(Parameter containing: tensor([0.1949, 0.2263], requires_grad=True), name='mlp.0.bias')},
%"mlp.1.bias"<FLOAT,[1]>{TorchTensor<FLOAT,[1]>(Parameter containing: tensor([-0.4595], requires_grad=True), name='mlp.1.bias')},
%"val_0"<FLOAT,[3,2]>{Tensor<FLOAT,[3,2]>(array([[-0.03271979, 0.5771984 ], [ 0.48856184, -0.1434506 ], [ 0.53982925, -0.26834208]], dtype=float32), name='val_0')},
%"val_2"<FLOAT,[2,1]>{Tensor<FLOAT,[2,1]>(array([[-0.6689668 ], [ 0.59571433]], dtype=float32), name='val_2')},
%"scalar_tensor_default"<FLOAT,[]>{Tensor<FLOAT,[]>(array(0., dtype=float32), name='scalar_tensor_default')},
%"scalar_tensor_default_2"<FLOAT,[]>{Tensor<FLOAT,[]>(array(2., dtype=float32), name='scalar_tensor_default_2')}
),
) {
0 | # node_MatMul_1
%"val_1"<FLOAT,[2]> ⬅️ ::MatMul(%"x", %"val_0"{[[-0.03271978721022606, 0.5771983861923218], [0.48856183886528015, -0.14345060288906097], [0.5398292541503906, -0.2683420777320862]]})
1 | # node_linear
%"linear"<FLOAT,[2]> ⬅️ ::Add(%"val_1", %"mlp.0.bias"{[0.19491833448410034, 0.22633221745491028]})
2 | # node_MatMul_3
%"val_3"<FLOAT,[1]> ⬅️ ::MatMul(%"linear", %"val_2"{[[-0.6689668297767639], [0.5957143306732178]]})
3 | # node_linear_1
%"linear_1"<FLOAT,[1]> ⬅️ ::Add(%"val_3", %"mlp.1.bias"{[-0.45953357219696045]})
4 | # node_sum_1
%"sum_1"<FLOAT,[]> ⬅️ ::ReduceSum(%"linear_1") {noop_with_empty_axes=0, keepdims=0}
5 | # node_gt
%"gt"<BOOL,[]> ⬅️ ::Greater(%"sum_1", %"scalar_tensor_default"{0.0})
6 | # node_cond__0
%"getitem"<FLOAT,[1]> ⬅️ ::If(%"gt") {then_branch=
graph(
name=true_graph_0,
inputs=(
),
outputs=(
%"mul_true_graph_0"<FLOAT,[1]>
),
) {
0 | # node_mul
%"mul_true_graph_0"<FLOAT,[1]> ⬅️ ::Mul(%"linear_1", %"scalar_tensor_default_2"{2.0})
return %"mul_true_graph_0"<FLOAT,[1]>
}, else_branch=
graph(
name=false_graph_0,
inputs=(
),
outputs=(
%"neg_false_graph_0"<FLOAT,[1]>
),
) {
0 | # node_neg
%"neg_false_graph_0"<FLOAT,[1]> ⬅️ ::Neg(%"linear_1")
return %"neg_false_graph_0"<FLOAT,[1]>
}}
return %"getitem"<FLOAT,[1]>
}
结论#
本教程演示了将带有条件逻辑的模型导出到ONNX的挑战,并使用 torch.cond() 提供了一个实际的解决方案。虽然默认导出器可能会失败或生成不完美的图,但重构模型的逻辑可确保兼容性并生成忠实的ONNX表示。
通过理解这些技术,我们可以克服在PyTorch模型中使用控制流时的常见陷阱,并确保与ONNX工作流程的顺畅集成。
延伸阅读#
下面的列表引用了从基本示例到高级场景的教程,不一定按列出的顺序。您可以随时跳转到您感兴趣的特定主题,或者坐下来,享受学习 ONNX 导出器所有知识的乐趣。
脚本总运行时间: (0分钟 6.284秒)