评价此页

使用 torch.compile 构建卷积/批归一化融合器#

作者: Horace He, Will Feng

您将学到什么
  • 如何使用 torch.compile 的模式匹配器注册自定义融合模式

先决条件
  • PyTorch v2.7.0

注意

此优化仅适用于推理模式下的模型(即 model.eval())。然而,torch.compile 的模式匹配系统适用于训练和推理。

首先,让我们导入一些包(我们稍后将在代码中用到所有这些包)。

from typing import Type, Dict, Any, Tuple, Iterable
import copy
import torch
import torch.nn as nn

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

在本教程中,我们将创建一个由卷积和批归一化组成的模型。请注意,这个模型有一些棘手的组件——一些卷积/批归一化模式隐藏在 Sequential 中,并且其中一个 BatchNorms 被另一个 Module 包裹。

class WrappedBatchNorm(nn.Module):
    def __init__(self):
        super().__init__()
        self.mod = nn.BatchNorm2d(1)
    def forward(self, x):
        return self.mod(x)

class M(nn.Module):
    def __init__(self):
        super().__init__()
        self.conv1 = nn.Conv2d(1, 1, 1)
        self.bn1 = nn.BatchNorm2d(1)
        self.conv2 = nn.Conv2d(1, 1, 1)
        self.nested = nn.Sequential(
            nn.BatchNorm2d(1),
            nn.Conv2d(1, 1, 1),
        )
        self.wrapped = WrappedBatchNorm()

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.conv2(x)
        x = self.nested(x)
        x = self.wrapped(x)
        return x

model = M().to(device)
model.eval()

将卷积与批归一化融合#

尝试在 PyTorch 中自动融合卷积和批归一化的主要挑战之一是 PyTorch 没有提供一种简单的方法来访问计算图。torch.compile 通过在编译期间捕获计算图解决了这个问题,允许我们对整个模型应用基于模式的优化,包括嵌套在 Sequential 模块中或封装在自定义模块中的操作。

import torch._inductor.pattern_matcher as pm
from torch._inductor.pattern_matcher import register_replacement

torch.compile 将捕获我们模型的图表示。在编译期间,隐藏在 Sequential 容器和封装模块中的模块都会被内联到图中,从而可用于模式匹配和优化。

将卷积与批归一化融合#

与其他一些融合不同,卷积与批归一化的融合不需要任何新的操作符。相反,由于推理期间的批归一化由逐点加法和乘法组成,这些操作可以“烘焙”到前一个卷积的权重中。这使我们能够完全从模型中移除批归一化!有关更多详细信息,请阅读 https://nenadmarkus.com/p/fusing-batchnorm-and-conv/。此处的代码复制自 pytorch/pytorch,以方便理解。

def fuse_conv_bn_eval(conv, bn):
    """
    Given a conv Module `A` and an batch_norm module `B`, returns a conv
    module `C` such that C(x) == B(A(x)) in inference mode.
    """
    assert(not (conv.training or bn.training)), "Fusion only for eval!"
    fused_conv = copy.deepcopy(conv)

    fused_conv.weight, fused_conv.bias = \
        fuse_conv_bn_weights(fused_conv.weight, fused_conv.bias,
                             bn.running_mean, bn.running_var, bn.eps, bn.weight, bn.bias)

    return fused_conv

def fuse_conv_bn_weights(conv_w, conv_b, bn_rm, bn_rv, bn_eps, bn_w, bn_b):
    if conv_b is None:
        conv_b = torch.zeros_like(bn_rm)
    if bn_w is None:
        bn_w = torch.ones_like(bn_rm)
    if bn_b is None:
        bn_b = torch.zeros_like(bn_rm)
    bn_var_rsqrt = torch.rsqrt(bn_rv + bn_eps)

    conv_w = conv_w * (bn_w * bn_var_rsqrt).reshape([-1] + [1] * (len(conv_w.shape) - 1))
    conv_b = (conv_b - bn_rm) * bn_var_rsqrt * bn_w + bn_b

    return torch.nn.Parameter(conv_w), torch.nn.Parameter(conv_b)

使用 torch.compile 进行模式匹配#

现在我们有了融合逻辑,我们需要注册一个模式,以便 torch.compile 的模式匹配器在编译期间识别并替换它。

# Define the pattern we want to match: conv2d followed by batch_norm
def conv_bn_pattern(x, conv_weight, conv_bias, bn_mean, bn_var, bn_weight, bn_bias):
    conv_out = torch.nn.functional.conv2d(x, conv_weight, conv_bias)
    bn_out = torch.nn.functional.batch_norm(
        conv_out, bn_mean, bn_var, bn_weight, bn_bias,
        training=False, eps=1e-5
    )
    return bn_out

def conv_bn_replacement(x, conv_weight, conv_bias, bn_mean, bn_var, bn_weight, bn_bias):
    fused_weight, fused_bias = fuse_conv_bn_weights(
        conv_weight, conv_bias, bn_mean, bn_var, 1e-5, bn_weight, bn_bias
    )
    return torch.nn.functional.conv2d(x, fused_weight, fused_bias)

# Example inputs are needed to trace the pattern functions.
# The inputs should match the function signatures of conv_bn_pattern and conv_bn_replacement.
# These are used to trace the pattern functions to create the match template.
# IMPORTANT: The pattern matcher is shape-agnostic! The specific shapes you use here
# don't limit what shapes will be matched - any valid conv2d->batch_norm sequence
# will be matched regardless of channels, kernel size, or spatial dimensions.
# - x: input tensor (batch_size, channels, height, width)
# - conv_weight: (out_channels, in_channels, kernel_h, kernel_w)
# - conv_bias: (out_channels,)
# - bn_mean, bn_var, bn_weight, bn_bias: all have shape (num_features,) matching out_channels
example_inputs = [
    torch.randn(1, 1, 4, 4).to(device),  # x: input tensor
    torch.randn(1, 1, 1, 1).to(device),  # conv_weight: 1 output channel, 1 input channel, 1x1 kernel
    torch.randn(1).to(device),           # conv_bias: 1 output channel
    torch.randn(1).to(device),           # bn_mean: batch norm running mean
    torch.randn(1).to(device),           # bn_var: batch norm running variance
    torch.randn(1).to(device),           # bn_weight: batch norm weight (gamma)
    torch.randn(1).to(device),           # bn_bias: batch norm bias (beta)
]

from torch._inductor.pattern_matcher import PatternMatcherPass
from torch._inductor import config

# Create a pattern matcher pass and register our pattern
patterns = PatternMatcherPass()

register_replacement(
    conv_bn_pattern,
    conv_bn_replacement,
    example_inputs,
    pm.fwd_only,
    patterns,
)

# Create a custom pass function that applies our patterns
def conv_bn_fusion_pass(graph):
    return patterns.apply(graph)

# Set our custom pass in the config
config.post_grad_custom_post_pass = conv_bn_fusion_pass

注意

为了演示目的,我们在这里做了一些简化,例如只匹配 2D 卷积。torch.compile 中的模式匹配器可以处理更复杂的模式。

测试我们的融合通道#

我们现在可以在我们的初始玩具模型上运行这个融合通道,并验证我们的结果是相同的。此外,我们可以打印出我们融合模型的代码,并验证不再有批归一化。

from torch._dynamo.utils import counters

# Clear the counters before compilation
counters.clear()

# Ensure pattern matcher is enabled
config.pattern_matcher = True

fused_model = torch.compile(model, backend="inductor")
inp = torch.randn(5, 1, 1, 1).to(device)

# Run the model to trigger compilation and pattern matching
with torch.no_grad():
    output = fused_model(inp)
    expected = model(inp)
    torch.testing.assert_close(output, expected)

# Check how many patterns were matched
assert counters['inductor']['pattern_matcher_count'] == 3, "Expected 3 conv-bn patterns to be matched"

# Create a model with different shapes than our example_inputs
test_model_diff_shape = nn.Sequential(
    nn.Conv2d(3, 16, 5),
    nn.BatchNorm2d(16),
    nn.ReLU(),
    nn.Conv2d(16, 32, 7),
    nn.BatchNorm2d(32),
).to(device).eval()

counters.clear()
compiled_diff_shape = torch.compile(test_model_diff_shape, backend="inductor")
test_input_diff_shape = torch.randn(1, 3, 28, 28).to(device)
with torch.no_grad():
    compiled_diff_shape(test_input_diff_shape)

# Check how many patterns were matched
assert counters['inductor']['pattern_matcher_count'] == 2, "Expected 2 conv-bn patterns to be matched"

在 ResNet18 上对我们的融合进行基准测试#

我们可以在像 ResNet18 这样更大的模型上测试我们的融合通道,看看这个通道能提高多少推理性能。

import torchvision.models as models
import time

rn18 = models.resnet18().to(device)
rn18.eval()

inp = torch.randn(10, 3, 224, 224).to(device)
output = rn18(inp)

def benchmark(model, iters=20):
    with torch.no_grad():
        for _ in range(10):
            model(inp)
        begin = time.time()
        for _ in range(iters):
            model(inp)
        return str(time.time()-begin)

# Benchmark original model
print("Original model time: ", benchmark(rn18))

# Compile with our custom pattern
compiled_with_pattern_matching = torch.compile(rn18, backend="inductor")

# Benchmark compiled model
print("\ntorch.compile (with conv-bn pattern matching and other fusions): ", benchmark(compiled_with_pattern_matching))


############
# Conclusion
# ----------
# As we can see, torch.compile provides a powerful way to implement
# graph transformations and optimizations through pattern matching.
# By registering custom patterns, we can extend torch.compile's
# optimization capabilities to handle domain-specific transformations.
#
# The conv-bn fusion demonstrated here is just one example of what's
# possible with torch.compile's pattern matching system.