评价此页
torch.compiler.set_stance">

使用 torch.compiler.set_stance 进行动态编译控制#

作者: William Wen

torch.compiler.set_stance 是一个 torch.compiler API,它允许您在对模型进行不同调用时更改 torch.compile 的行为,而无需重新将 torch.compile 应用于模型。

本教程提供了一些关于如何使用 torch.compiler.set_stance 的示例。

先决条件#

  • torch >= 2.6

描述#

torch.compiler.set_stance 可以用作装饰器、上下文管理器或原始函数,以在对模型进行不同调用时更改 torch.compile 的行为。

在下面的示例中,"force_eager" 姿态会忽略所有 torch.compile 指令。

import torch


@torch.compile
def foo(x):
    if torch.compiler.is_compiling():
        # torch.compile is active
        return x + 1
    else:
        # torch.compile is not active
        return x - 1


inp = torch.zeros(3)

print(foo(inp))  # compiled, prints 1
tensor([1., 1., 1.])

装饰器用法示例

@torch.compiler.set_stance("force_eager")
def bar(x):
    # force disable the compiler
    return foo(x)


print(bar(inp))  # not compiled, prints -1
tensor([-1., -1., -1.])

上下文管理器用法示例

with torch.compiler.set_stance("force_eager"):
    print(foo(inp))  # not compiled, prints -1
tensor([-1., -1., -1.])

原始函数用法示例

torch.compiler.set_stance("force_eager")
print(foo(inp))  # not compiled, prints -1
torch.compiler.set_stance("default")

print(foo(inp))  # compiled, prints 1
tensor([-1., -1., -1.])
tensor([1., 1., 1.])

torch.compile 姿态只能在任何 torch.compile 区域之外更改。否则将导致错误。

@torch.compile
def baz(x):
    # error!
    with torch.compiler.set_stance("force_eager"):
        return x + 1


try:
    baz(inp)
except Exception as e:
    print(e)


@torch.compiler.set_stance("force_eager")
def inner(x):
    return x + 1


@torch.compile
def outer(x):
    # error!
    return inner(x)


try:
    outer(inp)
except Exception as e:
    print(e)
Attempt to trace forbidden callable <function set_stance at 0x7f5c7687d510>

from user code:
   File "/var/lib/workspace/recipes_source/torch_compiler_set_stance_tutorial.py", line 85, in baz
    with torch.compiler.set_stance("force_eager"):

Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"

Attempt to trace forbidden callable <function inner at 0x7f5c8c688f70>

from user code:
   File "/var/lib/workspace/recipes_source/torch_compiler_set_stance_tutorial.py", line 103, in outer
    return inner(x)

Set TORCHDYNAMO_VERBOSE=1 for the internal stack trace (please do this especially if you're reporting a bug to PyTorch). For even more developer context, set TORCH_LOGS="+dynamo"
其他姿态包括
  • "default":默认姿态,用于正常编译。

  • "eager_on_recompile":当需要重新编译时急切运行代码。如果存在对输入有效的缓存编译代码,它仍将被使用。

  • "fail_on_recompile":当重新编译函数时引发错误。

有关更多姿态和选项,请参阅 torch.compiler.set_stance 文档页面。将来也可能会添加更多姿态/选项。

示例#

防止重新编译#

某些模型不期望任何重新编译——例如,您的输入可能总是具有相同的形状。由于重新编译可能很昂贵,我们可能希望在尝试重新编译时报错,以便我们能够检测并修复重新编译情况。"fail_on_recompilation" 姿态可用于此目的。

@torch.compile
def my_big_model(x):
    return torch.relu(x)


# first compilation
my_big_model(torch.randn(3))

with torch.compiler.set_stance("fail_on_recompile"):
    my_big_model(torch.randn(3))  # no recompilation - OK
    try:
        my_big_model(torch.randn(4))  # recompilation - error
    except Exception as e:
        print(e)
Detected recompile when torch.compile stance is 'fail_on_recompile'

如果报错太具有破坏性,我们可以改用 "eager_on_recompile",这将使 torch.compile 回退到急切模式而不是报错。这可能在不期望频繁重新编译但当需要重新编译时我们宁愿支付急切运行的成本而不是重新编译的成本时很有用。

@torch.compile
def my_huge_model(x):
    if torch.compiler.is_compiling():
        return x + 1
    else:
        return x - 1


# first compilation
print(my_huge_model(torch.zeros(3)))  # 1

with torch.compiler.set_stance("eager_on_recompile"):
    print(my_huge_model(torch.zeros(3)))  # 1
    print(my_huge_model(torch.zeros(4)))  # -1
    print(my_huge_model(torch.zeros(3)))  # 1
tensor([1., 1., 1.])
tensor([1., 1., 1.])
tensor([-1., -1., -1., -1.])
tensor([1., 1., 1.])

测量性能增益#

torch.compiler.set_stance 可用于比较急切模式与编译模式的性能,而无需定义单独的急切模型。

# Returns the result of running `fn()` and the time it took for `fn()` to run,
# in seconds. We use CUDA events and synchronization for the most accurate
# measurements.
def timed(fn):
    start = torch.cuda.Event(enable_timing=True)
    end = torch.cuda.Event(enable_timing=True)
    start.record()
    result = fn()
    end.record()
    torch.cuda.synchronize()
    return result, start.elapsed_time(end) / 1000


@torch.compile
def my_gigantic_model(x, y):
    x = x @ y
    x = x @ y
    x = x @ y
    return x


inps = torch.randn(5, 5), torch.randn(5, 5)

with torch.compiler.set_stance("force_eager"):
    print("eager:", timed(lambda: my_gigantic_model(*inps))[1])

# warmups
for _ in range(3):
    my_gigantic_model(*inps)

print("compiled:", timed(lambda: my_gigantic_model(*inps))[1])
eager: 0.0001730239987373352
compiled: 8.284799754619598e-05

更早崩溃#

在尝试进行非常长时间的编译之前,首先使用 "force_eager" 姿态运行一次急切迭代,可以帮助我们捕获与 torch.compile 无关的错误。

@torch.compile
def my_humongous_model(x):
    return torch.sin(x, x)


try:
    with torch.compiler.set_stance("force_eager"):
        print(my_humongous_model(torch.randn(3)))
    # this call to the compiled model won't run
    print(my_humongous_model(torch.randn(3)))
except Exception as e:
    print(e)
sin() takes 1 positional argument but 2 were given

结论#

在本教程中,我们学习了如何使用 torch.compiler.set_stance API 来修改 torch.compile 在对模型进行不同调用时的行为,而无需重新应用它。本教程演示了如何将 torch.compiler.set_stance 用作装饰器、上下文管理器或原始函数,以控制编译姿态,如 force_eagerdefaulteager_on_recompile 和“fail_on_recompile”。

有关更多信息,请参阅:torch.compiler.set_stance API 文档

脚本总运行时间: (0 分 10.580 秒)