顺序#
- class torch.nn.Sequential(*args: Module)[source]#
- class torch.nn.Sequential(arg: OrderedDict[str, Module])
一个顺序容器。
模块将按照它们在构造函数中传递的顺序添加到其中。或者,也可以传入模块的
OrderedDict
。Sequential
的forward()
方法接受任何输入并将其转发到它包含的第一个模块。然后它将输出“链式”地传递给每个后续模块的输入,最终返回最后一个模块的输出。Sequential
相对于手动调用一系列模块的优势在于,它允许将整个容器视为一个单独的模块,从而对Sequential
执行的转换会应用于它存储的每个模块(它们都是Sequential
的注册子模块)。Sequential
和torch.nn.ModuleList
之间有什么区别?ModuleList
顾名思义——一个用于存储Module
的列表!另一方面,Sequential
中的层以级联方式连接。示例
# Using Sequential to create a small model. When `model` is run, # input will first be passed to `Conv2d(1,20,5)`. The output of # `Conv2d(1,20,5)` will be used as the input to the first # `ReLU`; the output of the first `ReLU` will become the input # for `Conv2d(20,64,5)`. Finally, the output of # `Conv2d(20,64,5)` will be used as input to the second `ReLU` model = nn.Sequential( nn.Conv2d(1, 20, 5), nn.ReLU(), nn.Conv2d(20, 64, 5), nn.ReLU() ) # Using Sequential with OrderedDict. This is functionally the # same as the above code model = nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(1, 20, 5)), ("relu1", nn.ReLU()), ("conv2", nn.Conv2d(20, 64, 5)), ("relu2", nn.ReLU()), ] ) )
- append(module)[source]#
在末尾追加一个给定模块。
- 参数
module (nn.Module) – 要追加的模块
- 返回类型
自身
示例
>>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> n.append(nn.Linear(3, 4)) Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) )
- extend(sequential)[source]#
使用另一个 Sequential 容器中的层扩展当前 Sequential 容器。
- 参数
sequential (Sequential) – 一个 Sequential 容器,其层将添加到当前容器中。
- 返回类型
自身
示例
>>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> other = nn.Sequential(nn.Linear(3, 4), nn.Linear(4, 5)) >>> n.extend(other) # or `n + other` Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) (3): Linear(in_features=4, out_features=5, bias=True) )
- insert(index, module)[source]#
在指定索引处将模块插入 Sequential 容器中。
示例
>>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> n.insert(0, nn.Linear(3, 4)) Sequential( (0): Linear(in_features=3, out_features=4, bias=True) (1): Linear(in_features=1, out_features=2, bias=True) (2): Linear(in_features=2, out_features=3, bias=True) )