评价此页

(Beta) 使用缩放点积注意力(SDPA)实现高性能 Transformer#

创建日期: 2023年3月15日 | 最后更新: 2024年10月09日 | 最后验证: 2024年11月05日

作者: Driss Guessous

摘要#

在本教程中,我们想重点介绍一个有助于实现 Transformer 架构的新 torch.nn.functional 函数。该函数名为 torch.nn.functional.scaled_dot_product_attention。有关该函数的详细描述,请参阅 PyTorch 文档。该函数已集成到 torch.nn.MultiheadAttentiontorch.nn.TransformerEncoderLayer 中。

概述#

总的来说,此 PyTorch 函数根据论文 Attention is all you need 中的定义,计算查询(query)、键(key)和值(value)之间的缩放点积注意力(SDPA)。虽然可以使用现有的 PyTorch 函数来实现此功能,但融合实现可以比朴素实现带来显著的性能优势。

融合实现#

对于 CUDA 张量输入,该函数将分派到以下实现之一:

注意

本教程需要 PyTorch 2.0.0 或更高版本。

import torch
import torch.nn as nn
import torch.nn.functional as F
device = "cuda" if torch.cuda.is_available() else "cpu"

# Example Usage:
query, key, value = torch.randn(2, 3, 8, device=device), torch.randn(2, 3, 8, device=device), torch.randn(2, 3, 8, device=device)
F.scaled_dot_product_attention(query, key, value)
tensor([[[-0.1471,  0.0784, -0.0581, -0.5448,  0.0610, -0.4824,  0.0488,
          -0.4969],
         [-0.3822, -0.5073, -0.2710, -0.7289,  0.1801, -0.2160, -0.0845,
          -0.1191],
         [-0.3038, -0.4056, -0.3013, -0.4887,  0.2677, -0.2204, -0.0220,
          -0.0686]],

        [[ 0.1158, -0.4914,  1.2867, -0.2343,  0.2195, -0.3615,  0.2703,
          -1.0827],
         [ 0.1269, -0.4285,  1.2088, -0.3356,  0.1363, -0.2540,  0.3196,
          -0.9992],
         [ 0.1568, -0.4041,  1.2502, -0.3362,  0.1297, -0.2964,  0.3251,
          -0.9878]]], device='cuda:0')

显式分派控制#

虽然函数会自动分派到三种实现之一,但用户也可以通过使用上下文管理器来显式控制分派。此上下文管理器允许用户显式禁用某些实现。如果用户想确保函数确实使用了最快的实现来处理其特定输入,可以使用上下文管理器来遍历并测量性能。

# Lets define a helpful benchmarking function:
import torch.utils.benchmark as benchmark
def benchmark_torch_function_in_microseconds(f, *args, **kwargs):
    t0 = benchmark.Timer(
        stmt="f(*args, **kwargs)", globals={"args": args, "kwargs": kwargs, "f": f}
    )
    return t0.blocked_autorange().mean * 1e6

# Lets define the hyper-parameters of our input
batch_size = 32
max_sequence_len = 1024
num_heads = 32
embed_dimension = 32

dtype = torch.float16

query = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, max_sequence_len, embed_dimension, device=device, dtype=dtype)

print(f"The default implementation runs in {benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value):.3f} microseconds")

# Lets explore the speed of each of the 3 implementations
from torch.nn.attention import SDPBackend, sdpa_kernel


with sdpa_kernel(SDPBackend.MATH):
    math_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
    print(f"The math implementation runs in {math_time:.3f} microseconds")

with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
    try:
        flash_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
        print(f"The flash attention implementation runs in {flash_time:.3f} microseconds")
    except RuntimeError:
        print("FlashAttention is not supported. See warnings for reasons.")

with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
    try:
        efficient_time=benchmark_torch_function_in_microseconds(F.scaled_dot_product_attention, query, key, value)
        print(f"The memory efficient implementation runs in {efficient_time:.3f} microseconds")
    except RuntimeError:
        print("EfficientAttention is not supported. See warnings for reasons.")
The default implementation runs in 2273.824 microseconds
The math implementation runs in 87451.818 microseconds
The flash attention implementation runs in 2281.270 microseconds
The memory efficient implementation runs in 4357.890 microseconds

硬件依赖性#

根据您运行上述单元格的机器以及可用的硬件,您的结果可能会有所不同。 - 如果您没有 GPU 并且在 CPU 上运行,那么对于 FP32,上下文管理器将不起作用,所有三次运行都应返回相似的时间。 - 根据您的显卡支持的计算能力,Flash Attention 或内存高效实现可能已失败。

因果自注意力#

下面是一个多头因果自注意力块的示例实现,灵感来自 Andrej Karpathy 的 NanoGPT 仓库。

class CausalSelfAttention(nn.Module):

    def __init__(self, num_heads: int, embed_dimension: int, bias: bool=False, is_causal: bool=False, dropout:float=0.0):
        super().__init__()
        assert embed_dimension % num_heads == 0
        # key, query, value projections for all heads, but in a batch
        self.c_attn = nn.Linear(embed_dimension, 3 * embed_dimension, bias=bias)
        # output projection
        self.c_proj = nn.Linear(embed_dimension, embed_dimension, bias=bias)
        # regularization
        self.dropout = dropout
        self.resid_dropout = nn.Dropout(dropout)
        self.num_heads = num_heads
        self.embed_dimension = embed_dimension
        # Perform causal masking
        self.is_causal = is_causal

    def forward(self, x):
        # calculate query, key, values for all heads in batch and move head forward to be the batch dim
        query_projected = self.c_attn(x)

        batch_size = query_projected.size(0)
        embed_dim = query_projected.size(2)
        head_dim = embed_dim // (self.num_heads * 3)

        query, key, value = query_projected.chunk(3, -1)
        query = query.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
        key = key.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)
        value = value.view(batch_size, -1, self.num_heads, head_dim).transpose(1, 2)

        if self.training:
            dropout = self.dropout
            is_causal = self.is_causal
        else:
            dropout = 0.0
            is_causal = False

        y = F.scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=dropout, is_causal=is_causal)
        y = y.transpose(1, 2).view(batch_size, -1, self.num_heads * head_dim)

        y = self.resid_dropout(self.c_proj(y))
        return y


num_heads = 8
heads_per_dim = 64
embed_dimension = num_heads * heads_per_dim
dtype = torch.float16
model = CausalSelfAttention(num_heads=num_heads, embed_dimension=embed_dimension, bias=False, is_causal=True, dropout=0.1).to("cuda").to(dtype).eval()
print(model)
CausalSelfAttention(
  (c_attn): Linear(in_features=512, out_features=1536, bias=False)
  (c_proj): Linear(in_features=512, out_features=512, bias=False)
  (resid_dropout): Dropout(p=0.1, inplace=False)
)

NestedTensor 和密集张量支持#

SDPA 支持 NestedTensor 和密集张量输入。 NestedTensors 可以处理输入是可变长度序列批次的情况,而无需将每个序列填充到批次中的最大长度。有关 NestedTensors 的更多信息,请参阅 torch.nestedNestedTensors 教程

import random
def generate_rand_batch(
    batch_size,
    max_sequence_len,
    embed_dimension,
    pad_percentage=None,
    dtype=torch.float16,
    device="cuda",
):
    if not pad_percentage:
        return (
            torch.randn(
                batch_size,
                max_sequence_len,
                embed_dimension,
                dtype=dtype,
                device=device,
            ),
            None,
        )
    # Random sequence lengths
    seq_len_list = [
        int(max_sequence_len * (1 - random.gauss(pad_percentage, 0.01)))
        for _ in range(batch_size)
    ]
    # Make random entry in the batch have max sequence length
    seq_len_list[random.randint(0, batch_size - 1)] = max_sequence_len
    return (
        torch.nested.nested_tensor(
            [
                torch.randn(seq_len, embed_dimension,
                            dtype=dtype, device=device)
                for seq_len in seq_len_list
            ]
        ),
        seq_len_list,
    )

random_nt, _ = generate_rand_batch(32, 512, embed_dimension, pad_percentage=0.5, dtype=dtype, device=device)
random_dense, _ = generate_rand_batch(32, 512, embed_dimension, pad_percentage=None, dtype=dtype, device=device)

# Currently the fused implementations don't support ``NestedTensor`` for training
model.eval()

with sdpa_kernel(SDPBackend.FLASH_ATTENTION):
    try:
        print(f"Random NT runs in {benchmark_torch_function_in_microseconds(model, random_nt):.3f} microseconds")
        print(f"Random Dense runs in {benchmark_torch_function_in_microseconds(model, random_dense):.3f} microseconds")
    except RuntimeError:
        print("FlashAttention is not supported. See warnings for reasons.")
/usr/local/lib/python3.10/dist-packages/torch/nested/__init__.py:250: UserWarning:

The PyTorch API of nested tensors is in prototype stage and will change in the near future. We recommend specifying layout=torch.jagged when constructing a nested tensor, as this layout receives active development, has better operator coverage, and works with torch.compile. (Triggered internally at /pytorch/aten/src/ATen/NestedTensorImpl.cpp:178.)

Random NT runs in 606.955 microseconds
Random Dense runs in 952.497 microseconds

将 SDPA 与 torch.compile 一起使用#

随着 PyTorch 2.0 的发布,引入了一个名为 torch.compile() 的新功能,它可以提供比即时模式显着更好的性能。缩放点积注意力与 torch.compile() 完全可组合。为了演示这一点,让我们使用 torch.compile() 编译 CausalSelfAttention 模块,并观察由此产生的性能改进。

batch_size = 32
max_sequence_len = 256
x = torch.rand(batch_size, max_sequence_len,
               embed_dimension, device=device, dtype=dtype)
print(
    f"The non compiled module runs in  {benchmark_torch_function_in_microseconds(model, x):.3f} microseconds")


compiled_model = torch.compile(model)
# Let's compile it
compiled_model(x)
print(
    f"The compiled module runs in  {benchmark_torch_function_in_microseconds(compiled_model, x):.3f} microseconds")
The non compiled module runs in  425.073 microseconds
The compiled module runs in  544.064 microseconds

确切的执行时间取决于机器,但我的结果是:未编译的模块运行时间为 166.616 微秒,编译后的模块运行时间为 166.726 微秒。这并非我们所期望的。让我们深入研究一下。PyTorch 配备了一个出色的内置分析器,您可以使用它来检查代码的性能特征。

from torch.profiler import profile, record_function, ProfilerActivity
activities = [ProfilerActivity.CPU]
if device == 'cuda':
    activities.append(ProfilerActivity.CUDA)

with profile(activities=activities, record_shapes=False) as prof:
    with record_function(" Non-Compilied Causal Attention"):
        for _ in range(25):
            model(x)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))


with profile(activities=activities, record_shapes=False) as prof:
    with record_function("Compiled Causal Attention"):
        for _ in range(25):
            compiled_model(x)
print(prof.key_averages().table(sort_by="cuda_time_total", row_limit=10))

# For even more insights, you can export the trace and use ``chrome://tracing`` to view the results
#
# .. code-block:: python
#
#    prof.export_chrome_trace("compiled_causal_attention_trace.json").
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg     Self CUDA   Self CUDA %    CUDA total  CUDA time avg    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                         Non-Compilied Causal Attention        16.90%       2.143ms        76.94%       9.754ms       9.754ms       0.000us         0.00%      10.836ms      10.836ms             1
                         Non-Compilied Causal Attention         0.00%       0.000us         0.00%       0.000us       0.000us      10.734ms       101.14%      10.734ms      10.734ms             1
                                           aten::linear         1.05%     133.531us        35.29%       4.474ms      89.487us       0.000us         0.00%       8.012ms     160.232us            50
                                           aten::matmul         2.01%     254.573us        31.58%       4.003ms      80.066us       0.000us         0.00%       8.012ms     160.232us            50
                                               aten::mm         9.80%       1.242ms        27.24%       3.453ms      69.057us       7.789ms        73.39%       8.012ms     160.232us            50
         ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_tn         0.00%       0.000us         0.00%       0.000us       0.000us       5.572ms        52.51%       5.572ms     222.894us            25
                     aten::scaled_dot_product_attention         1.63%     207.093us        15.32%       1.943ms      77.701us       0.000us         0.00%       2.824ms     112.966us            25
              aten::_scaled_dot_product_flash_attention         2.35%     298.135us        13.69%       1.735ms      69.417us       0.000us         0.00%       2.824ms     112.966us            25
                         aten::_flash_attention_forward         2.38%     301.874us         9.51%       1.206ms      48.225us       2.824ms        26.61%       2.824ms     112.966us            25
void pytorch_flash::flash_fwd_kernel<Flash_fwd_kerne...         0.00%       0.000us         0.00%       0.000us       0.000us       2.824ms        26.61%       2.824ms     112.966us            25
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 12.678ms
Self CUDA time total: 10.613ms

-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
                                                   Name    Self CPU %      Self CPU   CPU total %     CPU total  CPU time avg     Self CUDA   Self CUDA %    CUDA total  CUDA time avg    # of Calls
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
## Call CompiledFxGraph fi6oafvta3xbcesbp2mjppjhzijz...         0.00%       0.000us         0.00%       0.000us       0.000us      10.648ms       100.38%      10.648ms     425.919us            25
                              Compiled Causal Attention         7.05%     917.762us        86.03%      11.205ms      11.205ms       0.000us         0.00%      10.608ms      10.608ms             1
                             Torch-Compiled Region: 0/0         7.21%     938.613us        75.92%       9.888ms     395.521us       0.000us         0.00%      10.608ms     424.325us            25
                                       CompiledFunction         8.70%       1.133ms        66.38%       8.645ms     345.804us       0.000us         0.00%      10.608ms     424.325us            25
## Call CompiledFxGraph fi6oafvta3xbcesbp2mjppjhzijz...        19.62%       2.555ms        57.68%       7.513ms     300.503us       0.000us         0.00%      10.608ms     424.325us            25
                                               aten::mm         7.55%     982.923us        11.56%       1.506ms      30.115us       7.786ms        73.39%       7.786ms     155.715us            50
         ampere_fp16_s1688gemm_fp16_128x128_ldg8_f2f_tn         0.00%       0.000us         0.00%       0.000us       0.000us       5.570ms        52.51%       5.570ms     222.808us            25
              aten::_scaled_dot_product_flash_attention         1.79%     232.953us        12.95%       1.686ms      67.447us       0.000us         0.00%       2.822ms     112.896us            25
                         aten::_flash_attention_forward         2.40%     313.225us         8.96%       1.166ms      46.660us       2.822ms        26.61%       2.822ms     112.896us            25
void pytorch_flash::flash_fwd_kernel<Flash_fwd_kerne...         0.00%       0.000us         0.00%       0.000us       0.000us       2.822ms        26.61%       2.822ms     112.896us            25
-------------------------------------------------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------  ------------
Self CPU time total: 13.024ms
Self CUDA time total: 10.608ms

前面的代码片段生成了一个报告,显示了编译和未编译模块在 GPU 上消耗最多执行时间的 Top 10 PyTorch 函数。分析表明,对于两个模块,大部分 GPU 时间都集中在相同的函数集上。此处的原因是 torch.compile 非常擅长消除与 PyTorch 相关的框架开销。如果您的模型启动了大型、高效的 CUDA 内核(在本例中 CausalSelfAttention 就是如此),那么 PyTorch 的开销可能就会被隐藏。

实际上,您的模块通常不只包含一个 CausalSelfAttention 块。在试验 Andrej Karpathy 的 NanoGPT 仓库时,将模块编译后,每次训练步骤的时间从 6090.49ms 减少到 3273.17ms!这是在 NanoGPT 使用 Shakespeare 数据集进行训练的提交 ae3a8d5 上完成的。

将 SDPA 与 attn_bias 子类一起使用#

# As of PyTorch 2.3, we have added a new submodule that contains tensor subclasses.
# Designed to be used with ``torch.nn.functional.scaled_dot_product_attention``.
# The module is named ``torch.nn.attention.bias`` and contains the following two
# utilities for generating causal attention variants:
#
# - ``torch.nn.attention.bias.causal_upper_left``
# - ``torch.nn.attention.bias.causal_lower_right``
#
# .. note::
#    The current argument ``is_causal`` in ``torch.nn.functional.scaled_dot_product_attention``
#    is the same as using ``torch.nn.attention.bias.causal_upper_left``.
#

from torch.nn.attention.bias import causal_lower_right, causal_upper_left

batch_size = 32
sequence_length_q = 2
sequence_length_kv = 10
num_heads = 16
embed_dimension = 32

dtype = torch.float16

query = torch.rand(batch_size, num_heads, sequence_length_q, embed_dimension, device=device, dtype=dtype)
key = torch.rand(batch_size, num_heads, sequence_length_kv, embed_dimension, device=device, dtype=dtype)
value = torch.rand(batch_size, num_heads, sequence_length_kv, embed_dimension, device=device, dtype=dtype)

upper_left_bias = causal_upper_left(sequence_length_q, sequence_length_kv)
lower_right_bias = causal_lower_right(sequence_length_q, sequence_length_kv)

print(type(upper_left_bias))
print(type(lower_right_bias))

assert type(upper_left_bias) == type(lower_right_bias)
assert issubclass(type(upper_left_bias), torch.Tensor)

# As you can see from the previous output, are the same type ``torch.nn.attention.bias.CausalBias``
# and subclass ``torch.Tensor``

# Lets see what these tensors look like
print(upper_left_bias)
print(lower_right_bias)

# Upper Left Bias aligns the causal attention mask to the upper left corner of the attention scores matrix.
# This only has an impact when the attention scores matrix is not square, which is common for decoding use cases.
# Another way of thinking about this concept is that when you use upper left bias,
# the 0th token in the query is aligned to the 0th token in the key, while for lower right bias,
# Assuming the attention score matrix is two dimensional, ``attn_score[0][0]`` is the attention score
# between the 0th token in the query and the 0th token in the key.
# For lower right bias, the sequence of q is aligned so that the last token in q is aligned to the last token in k
# (for example, ``attn_score[-1][-1])`` is all True since the last token in q is at the same position as the last token in k
# even if the sequence length of q and k are different.

# These objects are intended to be used with sdpa
out_upper_left = F.scaled_dot_product_attention(query, key, value, upper_left_bias)
out_lower_right = F.scaled_dot_product_attention(query, key, value, lower_right_bias)
out_is_causal = F.scaled_dot_product_attention(query, key, value, is_causal=True)

assert torch.allclose(out_upper_left, out_is_causal)
assert not torch.allclose(out_upper_left, out_lower_right)

# These attention biases should also be compatible with torch.compile
compiled_sdpa = torch.compile(F.scaled_dot_product_attention, fullgraph=True)
out_upper_left = compiled_sdpa(query, key, value, upper_left_bias)
<class 'torch.nn.attention.bias.CausalBias'>
<class 'torch.nn.attention.bias.CausalBias'>
tensor([[ True, False, False, False, False, False, False, False, False, False],
        [ True,  True, False, False, False, False, False, False, False, False]])
tensor([[ True,  True,  True,  True,  True,  True,  True,  True,  True, False],
        [ True,  True,  True,  True,  True,  True,  True,  True,  True,  True]])

结论#

在本教程中,我们演示了 torch.nn.functional.scaled_dot_product_attention 的基本用法。我们展示了如何使用 sdpa_kernel 上下文管理器来断言在 GPU 上使用了某种实现。此外,我们构建了一个简单的 CausalSelfAttention 模块,它可以与 NestedTensor 一起工作并且可以进行 torch 编译。在此过程中,我们展示了如何使用分析工具来探索用户定义的模块的性能特征。

脚本总运行时间: (0 分 7.096 秒)