评价此页

了解基础知识 || 快速入门 || 张量 || 数据集 & DataLoader || 变换 || 构建模型 || 自动微分 || 优化 || 保存 & 加载模型

优化模型参数#

创建于:2021 年 2 月 9 日 | 最后更新:2025 年 4 月 28 日 | 最后验证:2024 年 11 月 5 日

现在我们有了模型和数据,是时候通过在数据上优化其参数来训练、验证和测试我们的模型了。训练模型是一个迭代过程;在每次迭代中,模型会猜测输出,计算其猜测的误差(损失),收集误差相对于其参数的导数(正如我们在上一节中看到的),并使用梯度下降优化这些参数。有关此过程的更详细演练,请观看 3Blue1Brown 关于反向传播的视频。

先决代码#

我们加载了来自数据集 & DataLoader构建模型之前各节的代码。

import torch
from torch import nn
from torch.utils.data import DataLoader
from torchvision import datasets
from torchvision.transforms import ToTensor

training_data = datasets.FashionMNIST(
    root="data",
    train=True,
    download=True,
    transform=ToTensor()
)

test_data = datasets.FashionMNIST(
    root="data",
    train=False,
    download=True,
    transform=ToTensor()
)

train_dataloader = DataLoader(training_data, batch_size=64)
test_dataloader = DataLoader(test_data, batch_size=64)

class NeuralNetwork(nn.Module):
    def __init__(self):
        super().__init__()
        self.flatten = nn.Flatten()
        self.linear_relu_stack = nn.Sequential(
            nn.Linear(28*28, 512),
            nn.ReLU(),
            nn.Linear(512, 512),
            nn.ReLU(),
            nn.Linear(512, 10),
        )

    def forward(self, x):
        x = self.flatten(x)
        logits = self.linear_relu_stack(x)
        return logits

model = NeuralNetwork()
  0%|          | 0.00/26.4M [00:00<?, ?B/s]
  0%|          | 65.5k/26.4M [00:00<01:12, 363kB/s]
  1%|          | 229k/26.4M [00:00<00:38, 681kB/s]
  3%|▎         | 918k/26.4M [00:00<00:12, 2.10MB/s]
 14%|█▍        | 3.67M/26.4M [00:00<00:03, 7.25MB/s]
 37%|███▋      | 9.70M/26.4M [00:00<00:01, 16.6MB/s]
 60%|█████▉    | 15.7M/26.4M [00:01<00:00, 22.2MB/s]
 82%|████████▏ | 21.8M/26.4M [00:01<00:00, 25.8MB/s]
100%|██████████| 26.4M/26.4M [00:01<00:00, 19.3MB/s]

  0%|          | 0.00/29.5k [00:00<?, ?B/s]
100%|██████████| 29.5k/29.5k [00:00<00:00, 328kB/s]

  0%|          | 0.00/4.42M [00:00<?, ?B/s]
  1%|▏         | 65.5k/4.42M [00:00<00:12, 363kB/s]
  5%|▌         | 229k/4.42M [00:00<00:06, 682kB/s]
 21%|██        | 918k/4.42M [00:00<00:01, 2.11MB/s]
 83%|████████▎ | 3.67M/4.42M [00:00<00:00, 7.28MB/s]
100%|██████████| 4.42M/4.42M [00:00<00:00, 6.10MB/s]

  0%|          | 0.00/5.15k [00:00<?, ?B/s]
100%|██████████| 5.15k/5.15k [00:00<00:00, 49.1MB/s]

超参数#

超参数是可调整的参数,可让您控制模型优化过程。不同的超参数值会影响模型训练和收敛速度(有关超参数调优,点击此处了解更多)。

我们为训练定义了以下超参数:
  • Epochs 数量 - 迭代数据集的次数

  • Batch Size - 在参数更新之前通过网络传播的数据样本数量

  • 学习率 - 在每个 batch/epoch 中更新模型参数的幅度。较小的值会产生较慢的学习速度,而较大的值可能会在训练期间导致不可预测的行为。

learning_rate = 1e-3
batch_size = 64
epochs = 5

优化循环#

一旦我们设置好超参数,就可以通过优化循环来训练和优化我们的模型。优化循环的每次迭代称为一个epoch

每个 epoch 包含两个主要部分:
  • 训练循环 - 迭代训练数据集并尝试收敛到最优参数。

  • 验证/测试循环 - 迭代测试数据集以检查模型性能是否正在提高。

让我们简要熟悉一下训练循环中使用的一些概念。跳转到查看优化循环的完整实现

损失函数#

当呈现一些训练数据时,我们未经训练的网络很可能无法给出正确答案。损失函数衡量获得结果与目标值之间的不相似程度,而损失函数是我们希望在训练期间最小化的目标。为了计算损失,我们使用给定数据样本的输入进行预测,并将其与真实数据标签值进行比较。

常见的损失函数包括用于回归任务的 nn.MSELoss(均方误差),以及用于分类的 nn.NLLLoss(负对数似然)。nn.CrossEntropyLoss 结合了 nn.LogSoftmaxnn.NLLLoss

我们将模型的输出 logits 传递给 nn.CrossEntropyLoss,它将对 logits 进行归一化并计算预测误差。

# Initialize the loss function
loss_fn = nn.CrossEntropyLoss()

优化器#

优化是在每个训练步骤中调整模型参数以减少模型误差的过程。优化算法定义了此过程的执行方式(在本例中我们使用随机梯度下降)。所有优化逻辑都封装在 optimizer 对象中。在这里,我们使用 SGD 优化器;此外,PyTorch 中还有许多不同的优化器,如 ADAM 和 RMSProp,它们对不同类型的模型和数据效果更好。

我们通过注册需要训练的模型参数并传入学习率超参数来初始化优化器。

在训练循环中,优化分三个步骤进行:
  • 调用 optimizer.zero_grad() 来重置模型参数的梯度。默认情况下,梯度会累加;为防止重复计算,我们在每次迭代时显式将其清零。

  • 通过调用 loss.backward() 对预测损失进行反向传播。PyTorch 将损失关于每个参数的梯度沉积下来。

  • 一旦我们有了梯度,我们就调用 optimizer.step() 来根据反向传播收集的梯度调整参数。

完整实现#

我们定义了 train_loop 来遍历我们的优化代码,以及 test_loop 来评估模型在我们的测试数据上的性能。

def train_loop(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)
    # Set the model to training mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.train()
    for batch, (X, y) in enumerate(dataloader):
        # Compute prediction and loss
        pred = model(X)
        loss = loss_fn(pred, y)

        # Backpropagation
        loss.backward()
        optimizer.step()
        optimizer.zero_grad()

        if batch % 100 == 0:
            loss, current = loss.item(), batch * batch_size + len(X)
            print(f"loss: {loss:>7f}  [{current:>5d}/{size:>5d}]")


def test_loop(dataloader, model, loss_fn):
    # Set the model to evaluation mode - important for batch normalization and dropout layers
    # Unnecessary in this situation but added for best practices
    model.eval()
    size = len(dataloader.dataset)
    num_batches = len(dataloader)
    test_loss, correct = 0, 0

    # Evaluating the model with torch.no_grad() ensures that no gradients are computed during test mode
    # also serves to reduce unnecessary gradient computations and memory usage for tensors with requires_grad=True
    with torch.no_grad():
        for X, y in dataloader:
            pred = model(X)
            test_loss += loss_fn(pred, y).item()
            correct += (pred.argmax(1) == y).type(torch.float).sum().item()

    test_loss /= num_batches
    correct /= size
    print(f"Test Error: \n Accuracy: {(100*correct):>0.1f}%, Avg loss: {test_loss:>8f} \n")

我们初始化损失函数和优化器,并将它们传递给 train_looptest_loop。您可以随意增加 epoch 的数量来跟踪模型不断提高的性能。

loss_fn = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)

epochs = 10
for t in range(epochs):
    print(f"Epoch {t+1}\n-------------------------------")
    train_loop(train_dataloader, model, loss_fn, optimizer)
    test_loop(test_dataloader, model, loss_fn)
print("Done!")
Epoch 1
-------------------------------
loss: 2.301682  [   64/60000]
loss: 2.285376  [ 6464/60000]
loss: 2.264773  [12864/60000]
loss: 2.262620  [19264/60000]
loss: 2.242884  [25664/60000]
loss: 2.210080  [32064/60000]
loss: 2.218796  [38464/60000]
loss: 2.187026  [44864/60000]
loss: 2.189476  [51264/60000]
loss: 2.150710  [57664/60000]
Test Error:
 Accuracy: 48.5%, Avg loss: 2.146050

Epoch 2
-------------------------------
loss: 2.163555  [   64/60000]
loss: 2.151922  [ 6464/60000]
loss: 2.090656  [12864/60000]
loss: 2.105403  [19264/60000]
loss: 2.059481  [25664/60000]
loss: 1.987678  [32064/60000]
loss: 2.020719  [38464/60000]
loss: 1.941789  [44864/60000]
loss: 1.948240  [51264/60000]
loss: 1.865856  [57664/60000]
Test Error:
 Accuracy: 56.8%, Avg loss: 1.867382

Epoch 3
-------------------------------
loss: 1.907977  [   64/60000]
loss: 1.877919  [ 6464/60000]
loss: 1.752169  [12864/60000]
loss: 1.791735  [19264/60000]
loss: 1.694619  [25664/60000]
loss: 1.629127  [32064/60000]
loss: 1.656080  [38464/60000]
loss: 1.560837  [44864/60000]
loss: 1.584142  [51264/60000]
loss: 1.472721  [57664/60000]
Test Error:
 Accuracy: 60.7%, Avg loss: 1.494831

Epoch 4
-------------------------------
loss: 1.569816  [   64/60000]
loss: 1.532427  [ 6464/60000]
loss: 1.379199  [12864/60000]
loss: 1.455104  [19264/60000]
loss: 1.350519  [25664/60000]
loss: 1.330791  [32064/60000]
loss: 1.353287  [38464/60000]
loss: 1.281627  [44864/60000]
loss: 1.312833  [51264/60000]
loss: 1.215242  [57664/60000]
Test Error:
 Accuracy: 63.2%, Avg loss: 1.240029

Epoch 5
-------------------------------
loss: 1.323688  [   64/60000]
loss: 1.299249  [ 6464/60000]
loss: 1.134269  [12864/60000]
loss: 1.246203  [19264/60000]
loss: 1.130681  [25664/60000]
loss: 1.143055  [32064/60000]
loss: 1.173563  [38464/60000]
loss: 1.112152  [44864/60000]
loss: 1.144440  [51264/60000]
loss: 1.066337  [57664/60000]
Test Error:
 Accuracy: 64.5%, Avg loss: 1.082814

Epoch 6
-------------------------------
loss: 1.160265  [   64/60000]
loss: 1.153253  [ 6464/60000]
loss: 0.973964  [12864/60000]
loss: 1.114817  [19264/60000]
loss: 0.994453  [25664/60000]
loss: 1.015597  [32064/60000]
loss: 1.060178  [38464/60000]
loss: 1.004292  [44864/60000]
loss: 1.033947  [51264/60000]
loss: 0.970858  [57664/60000]
Test Error:
 Accuracy: 65.8%, Avg loss: 0.980146

Epoch 7
-------------------------------
loss: 1.045717  [   64/60000]
loss: 1.057187  [ 6464/60000]
loss: 0.863114  [12864/60000]
loss: 1.025756  [19264/60000]
loss: 0.907181  [25664/60000]
loss: 0.923614  [32064/60000]
loss: 0.983985  [38464/60000]
loss: 0.933591  [44864/60000]
loss: 0.956259  [51264/60000]
loss: 0.905276  [57664/60000]
Test Error:
 Accuracy: 67.3%, Avg loss: 0.908974

Epoch 8
-------------------------------
loss: 0.959833  [   64/60000]
loss: 0.989362  [ 6464/60000]
loss: 0.782534  [12864/60000]
loss: 0.961402  [19264/60000]
loss: 0.847928  [25664/60000]
loss: 0.854421  [32064/60000]
loss: 0.929225  [38464/60000]
loss: 0.885736  [44864/60000]
loss: 0.899851  [51264/60000]
loss: 0.857163  [57664/60000]
Test Error:
 Accuracy: 68.7%, Avg loss: 0.856961

Epoch 9
-------------------------------
loss: 0.892750  [   64/60000]
loss: 0.938033  [ 6464/60000]
loss: 0.721357  [12864/60000]
loss: 0.912915  [19264/60000]
loss: 0.805165  [25664/60000]
loss: 0.801190  [32064/60000]
loss: 0.887380  [38464/60000]
loss: 0.852141  [44864/60000]
loss: 0.857553  [51264/60000]
loss: 0.819816  [57664/60000]
Test Error:
 Accuracy: 69.7%, Avg loss: 0.817237

Epoch 10
-------------------------------
loss: 0.838739  [   64/60000]
loss: 0.896917  [ 6464/60000]
loss: 0.673159  [12864/60000]
loss: 0.875241  [19264/60000]
loss: 0.772530  [25664/60000]
loss: 0.759746  [32064/60000]
loss: 0.853734  [38464/60000]
loss: 0.827200  [44864/60000]
loss: 0.824924  [51264/60000]
loss: 0.789588  [57664/60000]
Test Error:
 Accuracy: 70.8%, Avg loss: 0.785563

Done!

进一步阅读#

脚本总运行时间:(1 分钟 14.133 秒)