注意
转到末尾 下载完整的示例代码。
简介 || 张量 || 自动微分 || 构建模型 || TensorBoard 支持 || 训练模型 || 模型理解
PyTorch TensorBoard 支持#
创建于:2021 年 11 月 30 日 | 最后更新:2024 年 5 月 29 日 | 最后验证:2024 年 11 月 5 日
请跟随下面的视频或在 YouTube 上观看。
开始之前#
要运行此教程,您需要安装 PyTorch、TorchVision、Matplotlib 和 TensorBoard。
使用 conda
conda install pytorch torchvision -c pytorch
conda install matplotlib tensorboard
使用 pip
pip install torch torchvision matplotlib tensorboard
安装完依赖项后,请在此 notebook 中重新启动您安装了这些依赖项的 Python 环境。
简介#
在此 notebook 中,我们将训练 LeNet-5 的一个变体来处理 Fashion-MNIST 数据集。Fashion-MNIST 是一组描绘各种服装的图像瓦片,有十个类别标签指示所描绘的服装类型。
# PyTorch model and training necessities
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
# Image datasets and image manipulation
import torchvision
import torchvision.transforms as transforms
# Image display
import matplotlib.pyplot as plt
import numpy as np
# PyTorch TensorBoard support
from torch.utils.tensorboard import SummaryWriter
# In case you are using an environment that has TensorFlow installed,
# such as Google Colab, uncomment the following code to avoid
# a bug with saving embeddings to your TensorBoard directory
# import tensorflow as tf
# import tensorboard as tb
# tf.io.gfile = tb.compat.tensorflow_stub.io.gfile
在 TensorBoard 中显示图像#
让我们从将数据集中的示例图像添加到 TensorBoard 开始。
# Gather datasets and prepare them for consumption
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,))])
# Store separate training and validations splits in ./data
training_set = torchvision.datasets.FashionMNIST('./data',
download=True,
train=True,
transform=transform)
validation_set = torchvision.datasets.FashionMNIST('./data',
download=True,
train=False,
transform=transform)
training_loader = torch.utils.data.DataLoader(training_set,
batch_size=4,
shuffle=True,
num_workers=2)
validation_loader = torch.utils.data.DataLoader(validation_set,
batch_size=4,
shuffle=False,
num_workers=2)
# Class labels
classes = ('T-shirt/top', 'Trouser', 'Pullover', 'Dress', 'Coat',
'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle Boot')
# Helper function for inline image display
def matplotlib_imshow(img, one_channel=False):
if one_channel:
img = img.mean(dim=0)
img = img / 2 + 0.5 # unnormalize
npimg = img.numpy()
if one_channel:
plt.imshow(npimg, cmap="Greys")
else:
plt.imshow(np.transpose(npimg, (1, 2, 0)))
# Extract a batch of 4 images
dataiter = iter(training_loader)
images, labels = next(dataiter)
# Create a grid from the images and show them
img_grid = torchvision.utils.make_grid(images)
matplotlib_imshow(img_grid, one_channel=True)

0%| | 0.00/26.4M [00:00<?, ?B/s]
0%| | 65.5k/26.4M [00:00<01:12, 363kB/s]
1%| | 229k/26.4M [00:00<00:38, 681kB/s]
3%|▎ | 885k/26.4M [00:00<00:12, 2.02MB/s]
13%|█▎ | 3.54M/26.4M [00:00<00:03, 7.00MB/s]
35%|███▌ | 9.37M/26.4M [00:00<00:01, 16.1MB/s]
58%|█████▊ | 15.4M/26.4M [00:01<00:00, 22.0MB/s]
80%|████████ | 21.3M/26.4M [00:01<00:00, 25.3MB/s]
100%|██████████| 26.4M/26.4M [00:01<00:00, 19.3MB/s]
0%| | 0.00/29.5k [00:00<?, ?B/s]
100%|██████████| 29.5k/29.5k [00:00<00:00, 328kB/s]
0%| | 0.00/4.42M [00:00<?, ?B/s]
1%|▏ | 65.5k/4.42M [00:00<00:12, 361kB/s]
5%|▌ | 229k/4.42M [00:00<00:06, 681kB/s]
21%|██ | 918k/4.42M [00:00<00:01, 2.10MB/s]
83%|████████▎ | 3.67M/4.42M [00:00<00:00, 7.26MB/s]
100%|██████████| 4.42M/4.42M [00:00<00:00, 6.09MB/s]
0%| | 0.00/5.15k [00:00<?, ?B/s]
100%|██████████| 5.15k/5.15k [00:00<00:00, 55.2MB/s]
上面,我们使用 TorchVision 和 Matplotlib 创建了一个输入数据的迷你批次的视觉网格。下面,我们在 `SummaryWriter` 上使用 `add_image()` 调用来记录图像以供 TensorBoard 使用,我们还调用了 `flush()` 以确保它立即写入磁盘。
# Default log_dir argument is "runs" - but it's good to be specific
# torch.utils.tensorboard.SummaryWriter is imported above
writer = SummaryWriter('runs/fashion_mnist_experiment_1')
# Write image data to TensorBoard log dir
writer.add_image('Four Fashion-MNIST Images', img_grid)
writer.flush()
# To view, start TensorBoard on the command line with:
# tensorboard --logdir=runs
# ...and open a browser tab to https://:6006/
如果您在命令行启动 TensorBoard 并在新的浏览器标签页中打开它(通常在 `localhost:6006`),您应该会在 IMAGES 选项卡下看到图像网格。
绘制标量图以可视化训练#
TensorBoard 对于跟踪训练的进度和有效性非常有用。下面,我们将运行一个训练循环,跟踪一些指标,并将数据保存供 TensorBoard 使用。
让我们定义一个模型来分类我们的图像瓦片,以及一个用于训练的优化器和损失函数。
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 4 * 4, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = x.view(-1, 16 * 4 * 4)
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = self.fc3(x)
return x
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
现在让我们训练一个 epoch,并每 1000 个批次评估训练集与验证集的损失。
print(len(validation_loader))
for epoch in range(1): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(training_loader, 0):
# basic training loop
inputs, labels = data
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if i % 1000 == 999: # Every 1000 mini-batches...
print('Batch {}'.format(i + 1))
# Check against the validation set
running_vloss = 0.0
# In evaluation mode some model specific operations can be omitted eg. dropout layer
net.train(False) # Switching to evaluation mode, eg. turning off regularisation
for j, vdata in enumerate(validation_loader, 0):
vinputs, vlabels = vdata
voutputs = net(vinputs)
vloss = criterion(voutputs, vlabels)
running_vloss += vloss.item()
net.train(True) # Switching back to training mode, eg. turning on regularisation
avg_loss = running_loss / 1000
avg_vloss = running_vloss / len(validation_loader)
# Log the running loss averaged per batch
writer.add_scalars('Training vs. Validation Loss',
{ 'Training' : avg_loss, 'Validation' : avg_vloss },
epoch * len(training_loader) + i)
running_loss = 0.0
print('Finished Training')
writer.flush()
2500
Batch 1000
Batch 2000
Batch 3000
Batch 4000
Batch 5000
Batch 6000
Batch 7000
Batch 8000
Batch 9000
Batch 10000
Batch 11000
Batch 12000
Batch 13000
Batch 14000
Batch 15000
Finished Training
切换到您打开的 TensorBoard,查看 SCALARS 选项卡。
可视化您的模型#
TensorBoard 还可以用于检查模型内部的数据流。为此,请使用模型和示例输入调用 `add_graph()` 方法。
# Again, grab a single mini-batch of images
dataiter = iter(training_loader)
images, labels = next(dataiter)
# add_graph() will trace the sample input through your model,
# and render it as a graph.
writer.add_graph(net, images)
writer.flush()
当您切换到 TensorBoard 时,您应该会看到一个 GRAPHS 选项卡。双击“NET”节点以查看模型中的层和数据流。
使用嵌入可视化您的数据集#
我们使用的 28x28 图像瓦片可以被建模为 784 维向量(28 * 28 = 784)。将此投影到低维表示可能很有启发性。`add_embedding()` 方法会自动将一组数据投影到方差最大的三个维度,并将其显示为交互式 3D 图。`add_embedding()` 方法通过投影到方差最大的三个维度来自动完成此操作。
下面,我们将采用数据集的样本并生成此类嵌入。
# Select a random subset of data and corresponding labels
def select_n_random(data, labels, n=100):
assert len(data) == len(labels)
perm = torch.randperm(len(data))
return data[perm][:n], labels[perm][:n]
# Extract a random subset of data
images, labels = select_n_random(training_set.data, training_set.targets)
# get the class labels for each image
class_labels = [classes[label] for label in labels]
# log embeddings
features = images.view(-1, 28 * 28)
writer.add_embedding(features,
metadata=class_labels,
label_img=images.unsqueeze(1))
writer.flush()
writer.close()
现在,如果您切换到 TensorBoard 并选择 PROJECTOR 选项卡,您应该会看到投影的 3D 表示。您可以旋转和缩放模型。在大型和小型尺度上进行检查,看看是否能发现投影数据中的模式以及标签的聚类。
为了获得更好的可见性,建议
从左侧的“按颜色分类”下拉菜单中选择“标签”。
切换顶部的夜间模式图标,将浅色图像放在深色背景上。
其他资源#
有关更多信息,请参阅
PyTorch 关于 torch.utils.tensorboard.SummaryWriter 的文档
PyTorch.org 教程 中的 Tensorboard 教程内容
有关 TensorBoard 的更多信息,请参阅 TensorBoard 文档
脚本总运行时间: (1 分钟 49.060 秒)