Sequential#
- class torch.nn.Sequential(*args: Module)[源码]#
- class torch.nn.Sequential(arg: OrderedDict[str, Module])
一个顺序容器。
模块将按照构造函数中传递的顺序被添加进去。或者,也可以传递一个包含模块的
OrderedDict
。Sequential
的forward()
方法接受任何输入,并将其传递给它包含的第一个模块。然后,它将输出按顺序“链接”到后续每个模块的输入,最后返回最后一个模块的输出。Sequential
相对于手动调用一系列模块的优势在于,它可以将整个容器作为一个单独的模块来处理,从而对Sequential
进行的任何转换都会应用于它所存储的每个模块(这些模块都是Sequential
的已注册子模块)。Sequential
和torch.nn.ModuleList
之间有什么区别?ModuleList
正如其名——是一个用于存储Module
的列表!另一方面,Sequential
中的层以级联方式连接。示例
# Using Sequential to create a small model. When `model` is run, # input will first be passed to `Conv2d(1,20,5)`. The output of # `Conv2d(1,20,5)` will be used as the input to the first # `ReLU`; the output of the first `ReLU` will become the input # for `Conv2d(20,64,5)`. Finally, the output of # `Conv2d(20,64,5)` will be used as input to the second `ReLU` model = nn.Sequential( nn.Conv2d(1, 20, 5), nn.ReLU(), nn.Conv2d(20, 64, 5), nn.ReLU() ) # Using Sequential with OrderedDict. This is functionally the # same as the above code model = nn.Sequential( OrderedDict( [ ("conv1", nn.Conv2d(1, 20, 5)), ("relu1", nn.ReLU()), ("conv2", nn.Conv2d(20, 64, 5)), ("relu2", nn.ReLU()), ] ) )
- append(module)[源码]#
将给定的模块追加到末尾。
- 参数
module (nn.Module) – 要附加的模块
- 返回类型
自我
示例
>>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> n.append(nn.Linear(3, 4)) Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) )
- extend(sequential)[源码]#
将另一个 Sequential 容器中的层扩展到当前的 Sequential 容器中。
- 参数
sequential (Sequential) – 一个 Sequential 容器,其层将被添加到当前容器中。
- 返回类型
自我
示例
>>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> other = nn.Sequential(nn.Linear(3, 4), nn.Linear(4, 5)) >>> n.extend(other) # or `n + other` Sequential( (0): Linear(in_features=1, out_features=2, bias=True) (1): Linear(in_features=2, out_features=3, bias=True) (2): Linear(in_features=3, out_features=4, bias=True) (3): Linear(in_features=4, out_features=5, bias=True) )
- insert(index, module)[源码]#
将一个模块插入到指定索引处的 Sequential 容器中。
示例
>>> import torch.nn as nn >>> n = nn.Sequential(nn.Linear(1, 2), nn.Linear(2, 3)) >>> n.insert(0, nn.Linear(3, 4)) Sequential( (0): Linear(in_features=3, out_features=4, bias=True) (1): Linear(in_features=1, out_features=2, bias=True) (2): Linear(in_features=2, out_features=3, bias=True) )