评价此页

SoftMarginLoss#

class torch.nn.SoftMarginLoss(size_average=None, reduce=None, reduction='mean')[源码]#

创建一个标准,用于优化输入 Tensor xx 和目标 Tensor yy(包含 1 或 -1)之间的二分类逻辑损失。

loss(x,y)=ilog(1+exp(y[i]x[i]))x.nelement()\text{loss}(x, y) = \sum_i \frac{\log(1 + \exp(-y[i]*x[i]))}{\text{x.nelement}()}
参数
  • size_average (bool, optional) – 已弃用 (参见 reduction)。默认情况下,损失值在批次中的每个损失元素上取平均值。请注意,对于某些损失,每个样本有多个元素。如果字段 size_average 设置为 False,则损失值在每个小批次中而是求和。当 reduceFalse 时忽略。默认值:True

  • reduce (bool, optional) – 已弃用 (参见 reduction)。默认情况下,损失值在每个小批次中根据 size_average 对观测值进行平均或求和。当 reduceFalse 时,返回每个批次元素的损失值,并忽略 size_average。默认值:True

  • reduction (str, 可选) – 指定应用于输出的归约方式:'none' | 'mean' | 'sum''none':不应用归约;'mean':输出的总和将除以输出中的元素数量;'sum':输出将被求和。注意:size_averagereduce 正在被弃用,在此期间,指定这两个参数中的任何一个都将覆盖 reduction。默认值:'mean'

形状
  • 输入: ()(*),其中 * 表示任意数量的维度。

  • 目标:()(*),与输入形状相同。

  • 输出:标量。如果 reduction'none',则 ()(*),与输入形状相同。

forward(input, target)[源码]#

执行前向传播。

返回类型

张量