torch.optim.Optimizer.state_dict#
- Optimizer.state_dict()[源代码]#
将优化器的状态作为
dict
返回。它包含两个条目
state
:一个包含当前优化状态的 Dict。其内容在不同的优化器类中会有所不同,但有一些共同的特点。例如,状态是按参数保存的,而参数本身不保存。
state
是一个映射参数 ID 到一个包含每个参数对应状态的 Dict 的字典。
param_groups
:一个包含所有参数组的 List,其中每个参数组是一个 Dict。每个参数组包含优化器特有的元数据,例如学习率和权重衰减,以及组中参数的 ID 列表。如果参数组使用
named_parameters()
初始化,则名称内容也会保存在状态字典中。
注意:参数 ID 可能看起来像索引,但它们只是将状态与 param_group 关联的 ID。从 state_dict 加载时,优化器会按顺序匹配 param_group 的
params
(int ID)和优化器的param_groups
(实际的nn.Parameter
),以匹配状态,而无需额外验证。返回的状态字典可能看起来像
{ 'state': { 0: {'momentum_buffer': tensor(...), ...}, 1: {'momentum_buffer': tensor(...), ...}, 2: {'momentum_buffer': tensor(...), ...}, 3: {'momentum_buffer': tensor(...), ...} }, 'param_groups': [ { 'lr': 0.01, 'weight_decay': 0, ... 'params': [0] 'param_names' ['param0'] (optional) }, { 'lr': 0.001, 'weight_decay': 0.5, ... 'params': [1, 2, 3] 'param_names': ['param1', 'layer.weight', 'layer.bias'] (optional) } ] }