torch.trapezoid#
- torch.trapezoid(y, x=None, *, dx=None, dim=-1) Tensor #
沿
dim
计算梯形法则。默认情况下,元素之间的间隔假定为 1,但可以使用dx
指定不同的恒定间隔,也可以使用x
指定沿dim
的任意间隔。应只指定x
或dx
中的一个。假设
y
是一个一维张量,其元素为 , 默认计算为当指定
dx
时,计算变为有效地将结果乘以
dx
。当指定x
时,假设x
也是一个一维张量,其元素为 , 计算变为当
x
和y
的大小相同时,计算如上所述,无需广播。当它们的大小不同时,此函数的广播行为如下。对于x
和y
,函数会计算沿dim
维度的连续元素之间的差值。这会有效地创建两个张量 x_diff 和 y_diff,它们的形状与原始张量相同,只是沿dim
维度的长度减少了 1。之后,将这两个张量一起广播,以计算梯形法则的最终输出。有关详细信息,请参阅下面的示例。注意
梯形法则是通过平均黎曼和的左侧和右侧来近似函数定积分的技术。随着划分分辨率的增加,近似值会变得更准确。
- 参数
- 关键字参数
示例
>>> # Computes the trapezoidal rule in 1D, spacing is implicitly 1 >>> y = torch.tensor([1, 5, 10]) >>> torch.trapezoid(y) tensor(10.5) >>> # Computes the same trapezoidal rule directly to verify >>> (1 + 10 + 10) / 2 10.5 >>> # Computes the trapezoidal rule in 1D with constant spacing of 2 >>> # NOTE: the result is the same as before, but multiplied by 2 >>> torch.trapezoid(y, dx=2) 21.0 >>> # Computes the trapezoidal rule in 1D with arbitrary spacing >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) 28.5 >>> # Computes the same trapezoidal rule directly to verify >>> ((3 - 1) * (1 + 5) + (6 - 3) * (5 + 10)) / 2 28.5 >>> # Computes the trapezoidal rule for each row of a 3x3 matrix >>> y = torch.arange(9).reshape(3, 3) tensor([[0, 1, 2], [3, 4, 5], [6, 7, 8]]) >>> torch.trapezoid(y) tensor([ 2., 8., 14.]) >>> # Computes the trapezoidal rule for each column of the matrix >>> torch.trapezoid(y, dim=0) tensor([ 6., 8., 10.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with the same arbitrary spacing >>> y = torch.ones(3, 3) >>> x = torch.tensor([1, 3, 6]) >>> torch.trapezoid(y, x) array([5., 5., 5.]) >>> # Computes the trapezoidal rule for each row of a 3x3 ones matrix >>> # with different arbitrary spacing per row >>> y = torch.ones(3, 3) >>> x = torch.tensor([[1, 2, 3], [1, 3, 5], [1, 4, 7]]) >>> torch.trapezoid(y, x) array([2., 4., 6.])