ConvBn2d#
- class torch.ao.nn.intrinsic.qat.ConvBn2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=None, padding_mode='zeros', eps=1e-05, momentum=0.1, freeze_bn=False, qconfig=None)[source]#
A ConvBn2d module is a module fused from Conv2d and BatchNorm2d, attached with FakeQuantize modules for weight, used in quantization aware training.
我们结合了
torch.nn.Conv2d
和torch.nn.BatchNorm2d
的接口。与
torch.nn.Conv2d
类似,FakeQuantize 模块初始化为默认值。- 变量
freeze_bn –
weight_fake_quant – 权重的 fake quant 模块