评价此页

AdaptiveMaxPool2d#

class torch.nn.AdaptiveMaxPool2d(output_size, return_indices=False)[source]#

对由多个输入平面组成的输入信号应用 2D 自适应最大池化。

The output is of size Hout×WoutH_{out} \times W_{out}, for any input size. The number of output features is equal to the number of input planes.

参数
  • output_size (Union[int, None, tuple[Optional[int], Optional[int]]]) – 图像的目标输出尺寸,形式为 Hout×WoutH_{out} \times W_{out}. 可以是 (Hout,Wout)(H_{out}, W_{out}) 元组,或正方形图像的单个 HoutH_{out} Hout×HoutH_{out} \times H_{out}. HoutH_{out}WoutW_{out} 可以是 int,也可以是 None,后者表示尺寸将与输入尺寸相同。

  • return_indices (bool) – 如果设置为 True,将返回输出及其对应的索引。这对于传递给 nn.MaxUnpool2d 非常有用。默认为 False

形状
  • 输入: (N,C,Hin,Win)(N, C, H_{in}, W_{in})(C,Hin,Win)(C, H_{in}, W_{in})

  • 输出: (N,C,Hout,Wout)(N, C, H_{out}, W_{out})(C,Hout,Wout)(C, H_{out}, W_{out}),其中 (Hout,Wout)=output_size(H_{out}, W_{out})=\text{output\_size}

示例

>>> # target output size of 5x7
>>> m = nn.AdaptiveMaxPool2d((5, 7))
>>> input = torch.randn(1, 64, 8, 9)
>>> output = m(input)
>>> # target output size of 7x7 (square)
>>> m = nn.AdaptiveMaxPool2d(7)
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)
>>> # target output size of 10x7
>>> m = nn.AdaptiveMaxPool2d((None, 7))
>>> input = torch.randn(1, 64, 10, 9)
>>> output = m(input)