torch.mm#
- torch.mm(input, mat2, out_dtype=None, *, out=None) Tensor #
对矩阵
input
和mat2
执行矩阵乘法。如果
input
是 张量,mat2
是 张量,out
将是 张量。注意
此函数不进行广播。对于广播矩阵乘积,请参阅
torch.matmul()
。支持步长和稀疏 2-D 张量作为输入,支持带步长输入的自动求导。
此操作支持带稀疏布局的参数。如果提供了
out
,将使用其布局。否则,结果布局将从input
的布局中推断。警告
稀疏支持是测试版功能,某些布局/数据类型/设备组合可能不支持,或可能不支持自动求导。如果您发现缺少功能,请提交功能请求。
此操作符支持TensorFloat32。
在某些 ROCm 设备上,当使用 float16 输入时,此模块将对反向传播使用不同精度。
- 参数
- 关键字参数
out (Tensor, optional) – 输出张量。
示例
>>> mat1 = torch.randn(2, 3) >>> mat2 = torch.randn(3, 3) >>> torch.mm(mat1, mat2) tensor([[ 0.4851, 0.5037, -0.3633], [-0.0760, -3.6705, 2.4784]])