评价此页

AdaptiveMaxPool3d#

class torch.nn.AdaptiveMaxPool3d(output_size, return_indices=False)[source]#

对由多个输入平面组成的输入信号应用 3D 自适应最大池化。

The output is of size Dout×Hout×WoutD_{out} \times H_{out} \times W_{out}, for any input size. The number of output features is equal to the number of input planes.

参数
  • output_size (Union[int, None, tuple[Optional[int], Optional[int], Optional[int]]]) – 目标图像的输出大小,形式为 Dout×Hout×WoutD_{out} \times H_{out} \times W_{out}. 可以是一个元组 (Dout,Hout,Wout)(D_{out}, H_{out}, W_{out}),或者为立方体 Dout×Dout×DoutD_{out} \times D_{out} \times D_{out} 的单个 DoutD_{out}DoutD_{out}, HoutH_{out}WoutW_{out} 可以是 int 类型,也可以是 None,表示大小与输入保持一致。

  • return_indices (bool) – 如果为 True,则返回输出的同时也返回索引。这对于传递给 nn.MaxUnpool3d 非常有用。默认为 False

形状
  • 输入: (N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in})(C,Din,Hin,Win)(C, D_{in}, H_{in}, W_{in})

  • 输出: (N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out})(C,Dout,Hout,Wout)(C, D_{out}, H_{out}, W_{out}),其中 (Dout,Hout,Wout)=output_size(D_{out}, H_{out}, W_{out})=\text{output\_size}

示例

>>> # target output size of 5x7x9
>>> m = nn.AdaptiveMaxPool3d((5, 7, 9))
>>> input = torch.randn(1, 64, 8, 9, 10)
>>> output = m(input)
>>> # target output size of 7x7x7 (cube)
>>> m = nn.AdaptiveMaxPool3d(7)
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)
>>> # target output size of 7x9x8
>>> m = nn.AdaptiveMaxPool3d((7, None, None))
>>> input = torch.randn(1, 64, 10, 9, 8)
>>> output = m(input)