AOTInductor:Torch.Export 模型的预编译#
创建于:2025 年 6 月 13 日 | 最后更新于:2025 年 6 月 18 日
警告
AOTInductor 及其相关功能处于原型阶段,可能会发生向后不兼容的重大更改。
AOTInductor 是 TorchInductor 的一个专门版本,旨在处理已导出的 PyTorch 模型,对其进行优化,并生成共享库及其他相关工件。这些编译后的工件专门用于在非 Python 环境中部署,这些环境通常用于服务器端的推理部署。
在本教程中,您将深入了解如何获取 PyTorch 模型,将其导出,编译为工件,并使用 C++ 进行模型预测。
模型编译#
要使用 AOTInductor 编译模型,我们首先需要使用 torch.export.export()
将给定的 PyTorch 模型捕获到计算图中。torch.export 提供了可靠性保证和对所捕获 IR 的严格规范,AOTInductor 依赖于此。
然后,我们将使用 torch._inductor.aoti_compile_and_package()
使用 TorchInductor 编译导出的程序,并将编译后的工件保存到一个包中。
注意
如果您的机器上有支持 CUDA 的设备,并且您安装了支持 CUDA 的 PyTorch,以下代码将把模型编译成用于 CUDA 执行的共享库。否则,编译后的工件将在 CPU 上运行。为了在 CPU 推理期间获得更好的性能,建议在运行下面的 Python 脚本之前设置 export TORCHINDUCTOR_FREEZING=1
以启用冻结。同样的行为也适用于 Intel® GPU 环境。
import os
import torch
class Model(torch.nn.Module):
def __init__(self):
super().__init__()
self.fc1 = torch.nn.Linear(10, 16)
self.relu = torch.nn.ReLU()
self.fc2 = torch.nn.Linear(16, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.fc1(x)
x = self.relu(x)
x = self.fc2(x)
x = self.sigmoid(x)
return x
with torch.no_grad():
device = "cuda" if torch.cuda.is_available() else "cpu"
model = Model().to(device=device)
example_inputs=(torch.randn(8, 10, device=device),)
batch_dim = torch.export.Dim("batch", min=1, max=1024)
# [Optional] Specify the first dimension of the input x as dynamic.
exported = torch.export.export(model, example_inputs, dynamic_shapes={"x": {0: batch_dim}})
# [Note] In this example we directly feed the exported module to aoti_compile_and_package.
# Depending on your use case, e.g. if your training platform and inference platform
# are different, you may choose to save the exported model using torch.export.save and
# then load it back using torch.export.load on your inference platform to run AOT compilation.
output_path = torch._inductor.aoti_compile_and_package(
exported,
# [Optional] Specify the generated shared library path. If not specified,
# the generated artifact is stored in your system temp directory.
package_path=os.path.join(os.getcwd(), "model.pt2"),
)
在此示例中,Dim
参数用于将输入变量“x”的第一个维度指定为动态的。值得注意的是,编译后的库的路径和名称未指定,导致共享库存储在临时目录中。为了从 C++ 侧访问此路径,我们将其保存到文件中,以便稍后在 C++ 代码中检索。
Python 中的推理#
部署已编译工件进行推理有多种方式,其中一种是使用 Python。我们已在 Python 中提供了一个方便的实用 API torch._inductor.aoti_load_package()
用于加载和运行工件,示例如下所示
import os
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model = torch._inductor.aoti_load_package(os.path.join(os.getcwd(), "model.pt2"))
print(model(torch.randn(8, 10, device=device)))
推理时的输入应与导出时的输入具有相同的尺寸、数据类型和步长。
C++ 中的推理#
接下来,我们使用以下 C++ 示例文件 inference.cpp
来加载编译好的工件,从而可以直接在 C++ 环境中进行模型预测。
#include <iostream>
#include <vector>
#include <torch/torch.h>
#include <torch/csrc/inductor/aoti_package/model_package_loader.h>
int main() {
c10::InferenceMode mode;
torch::inductor::AOTIModelPackageLoader loader("model.pt2");
// Assume running on CUDA
std::vector<torch::Tensor> inputs = {torch::randn({8, 10}, at::kCUDA)};
std::vector<torch::Tensor> outputs = loader.run(inputs);
std::cout << "Result from the first inference:"<< std::endl;
std::cout << outputs[0] << std::endl;
// The second inference uses a different batch size and it works because we
// specified that dimension as dynamic when compiling model.pt2.
std::cout << "Result from the second inference:"<< std::endl;
// Assume running on CUDA
std::cout << loader.run({torch::randn({1, 10}, at::kCUDA)})[0] << std::endl;
return 0;
}
要构建 C++ 文件,您可以使用提供的 CMakeLists.txt
文件,该文件会自动调用 python model.py
对模型进行 AOT 编译,并将 inference.cpp
编译成名为 aoti_example
的可执行二进制文件。
cmake_minimum_required(VERSION 3.18 FATAL_ERROR)
project(aoti_example)
find_package(Torch REQUIRED)
add_executable(aoti_example inference.cpp model.pt2)
add_custom_command(
OUTPUT model.pt2
COMMAND python ${CMAKE_CURRENT_SOURCE_DIR}/model.py
DEPENDS model.py
)
target_link_libraries(aoti_example "${TORCH_LIBRARIES}")
set_property(TARGET aoti_example PROPERTY CXX_STANDARD 17)
如果目录结构如下所示,您可以执行以下命令来构建二进制文件。需要注意的是,CMAKE_PREFIX_PATH
变量对于 CMake 找到 LibTorch 库至关重要,并且它应该设置为绝对路径。请注意,您的路径可能与本示例中所示的路径不同。
aoti_example/
CMakeLists.txt
inference.cpp
model.py
$ mkdir build
$ cd build
$ CMAKE_PREFIX_PATH=/path/to/python/install/site-packages/torch/share/cmake cmake ..
$ cmake --build . --config Release
在 aoti_example
二进制文件在 build
目录中生成后,执行它将显示类似以下的结果
$ ./aoti_example
Result from the first inference:
0.4866
0.5184
0.4462
0.4611
0.4744
0.4811
0.4938
0.4193
[ CUDAFloatType{8,1} ]
Result from the second inference:
0.4883
0.4703
[ CUDAFloatType{2,1} ]
故障排除#
以下是一些用于调试 AOT Inductor 的有用工具。
要启用对输入的运行时检查,请将环境变量 AOTI_RUNTIME_CHECK_INPUTS
设置为 1。如果编译模型的输入在大小、数据类型或步长上与导出时使用的输入不同,这将引发 RuntimeError
。
API 参考#
- torch._inductor.aoti_compile_and_package(exported_program, _deprecated_unused_args=None, _deprecated_unused_kwargs=None, *, package_path=None, inductor_configs=None)[source]#
使用 AOTInductor 编译导出的程序,并将其打包到由输入 package_path 指定的 .pt2 工件中。要加载此包,您可以调用
torch._inductor.aoti_load_package(package_path)
。示例如下:
ep = torch.export.export(M(), ...) aoti_file = torch._inductor.aoti_compile_and_package( ep, package_path="my_package.pt2" ) compiled_model = torch._inductor.aoti_load_package("my_package.pt2")
要将多个模型编译并保存到单个
.pt2
工件中,您可以执行以下操作:ep1 = torch.export.export(M1(), ...) aoti_file1 = torch._inductor.aot_compile( ep1, ..., options={"aot_inductor.package": True} ) ep2 = torch.export.export(M2(), ...) aoti_file2 = torch._inductor.aot_compile( ep2, ..., options={"aot_inductor.package": True} ) from torch._inductor.package import package_aoti, load_package package_aoti("my_package.pt2", {"model1": aoti_file1, "model2": aoti_file2}) compiled_model1 = load_package("my_package.pt2", "model1") compiled_model2 = load_package("my_package.pt2", "model2")
- 参数
exported_program (ExportedProgram) – 通过调用 torch.export 创建的导出程序
package_path (Optional[FileLike]) – 生成的 .pt2 工件的可选指定路径。
inductor_configs (Optional[dict[str, Any]]) – 用于控制 inductor 的可选配置字典。
- 返回
生成的工件的路径
- 返回类型
- torch._inductor.aoti_load_package(path, run_single_threaded=False, device_index=-1)[source]#
从 PT2 包中加载模型。
如果多个模型被打包到 PT2 中,这将加载默认模型。要加载特定模型,您可以直接调用加载 API
from torch._inductor.package import load_package compiled_model1 = load_package("my_package.pt2", "model1") compiled_model2 = load_package("my_package.pt2", "model2")