评价此页

torch.signal.windows.gaussian#

torch.signal.windows.gaussian(M, *, std=1.0, sym=True, dtype=None, layout=torch.strided, device=None, requires_grad=False)[source]#

计算具有高斯波形的窗口。

高斯窗口定义如下:

wn=exp((n2σ)2)w_n = \exp{\left(-\left(\frac{n}{2\sigma}\right)^2\right)}

窗口被归一化为 1(最大值为 1)。但是,如果 M 是偶数且 symTrue,则 1 不会出现。

参数

M (int) – 窗的长度。换句话说,是返回的窗的点数。

关键字参数
  • std (float, optional) – 高斯分布的标准差。它控制窗口的宽度或窄度。默认值:1.0。

  • sym (bool, optional) – 如果为 False,则返回一个适用于频谱分析的周期性窗口。如果为 True,则返回一个适用于滤波器设计的对称窗口。默认值:True

  • dtype (torch.dtype, optional) – 返回张量所需的数据类型。默认值:如果为 None,则使用全局默认值(请参阅 torch.set_default_dtype())。

  • layout (torch.layout, optional) – 返回张量所需的布局。默认值:torch.strided

  • device (torch.device, optional) – 返回张量所需的设备。默认值:如果为 None,则使用当前设备的默认张量类型(请参阅 torch.set_default_device())。device 将是 CPU 张量类型的 CPU,或者是 CUDA 张量类型的当前 CUDA 设备。

  • requires_grad (bool, optional) – 是否应自动记录返回张量上的操作。默认值:False

返回类型

张量

示例

>>> # Generates a symmetric gaussian window with a standard deviation of 1.0.
>>> torch.signal.windows.gaussian(10)
tensor([4.0065e-05, 2.1875e-03, 4.3937e-02, 3.2465e-01, 8.8250e-01, 8.8250e-01, 3.2465e-01, 4.3937e-02, 2.1875e-03, 4.0065e-05])

>>> # Generates a periodic gaussian window and standard deviation equal to 0.9.
>>> torch.signal.windows.gaussian(10, sym=False,std=0.9)
tensor([1.9858e-07, 5.1365e-05, 3.8659e-03, 8.4658e-02, 5.3941e-01, 1.0000e+00, 5.3941e-01, 8.4658e-02, 3.8659e-03, 5.1365e-05])