评价此页

ReplicationPad2d#

class torch.nn.ReplicationPad2d(padding)[source]#

使用输入边界的复制来填充输入张量。

对于 N 维填充,请使用 torch.nn.functional.pad()

参数

padding (int, tuple) – 填充大小。如果为 int,则在所有边界使用相同的填充。如果为 4-tuple,则使用 (padding_left\text{padding\_left}, padding_right\text{padding\_right}, padding_top\text{padding\_top}, padding_bottom\text{padding\_bottom}) 请注意,输出尺寸必须保持为正。

形状
  • 输入:(N,C,Hin,Win)(N, C, H_{in}, W_{in})(C,Hin,Win)(C, H_{in}, W_{in})

  • 输出: (N,C,Hout,Wout)(N, C, H_{out}, W_{out})(C,Hout,Wout)(C, H_{out}, W_{out}),其中

    Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

示例

>>> m = nn.ReplicationPad2d(2)
>>> input = torch.arange(9, dtype=torch.float).reshape(1, 1, 3, 3)
>>> input
tensor([[[[0., 1., 2.],
          [3., 4., 5.],
          [6., 7., 8.]]]])
>>> m(input)
tensor([[[[0., 0., 0., 1., 2., 2., 2.],
          [0., 0., 0., 1., 2., 2., 2.],
          [0., 0., 0., 1., 2., 2., 2.],
          [3., 3., 3., 4., 5., 5., 5.],
          [6., 6., 6., 7., 8., 8., 8.],
          [6., 6., 6., 7., 8., 8., 8.],
          [6., 6., 6., 7., 8., 8., 8.]]]])
>>> # using different paddings for different sides
>>> m = nn.ReplicationPad2d((1, 1, 2, 0))
>>> m(input)
tensor([[[[0., 0., 1., 2., 2.],
          [0., 0., 1., 2., 2.],
          [0., 0., 1., 2., 2.],
          [3., 3., 4., 5., 5.],
          [6., 6., 7., 8., 8.]]]])