评价此页

ReflectionPad3d#

class torch.nn.ReflectionPad3d(padding)[source]#

使用输入边界的反射来填充输入张量。

对于 N 维填充,请使用 torch.nn.functional.pad()

参数

padding (int, tuple) – 填充大小。如果为 int,则在所有边界使用相同的填充。如果是 6-tuple,则使用 (padding_left\text{padding\_left}, padding_right\text{padding\_right}, padding_top\text{padding\_top}, padding_bottom\text{padding\_bottom}, padding_front\text{padding\_front}, padding_back\text{padding\_back}) 注意,填充大小应小于相应的输入维度。

形状
  • 输入:(N,C,Din,Hin,Win)(N, C, D_{in}, H_{in}, W_{in})(C,Din,Hin,Win)(C, D_{in}, H_{in}, W_{in})

  • 输出:(N,C,Dout,Hout,Wout)(N, C, D_{out}, H_{out}, W_{out})(C,Dout,Hout,Wout)(C, D_{out}, H_{out}, W_{out}),其中

    Dout=Din+padding_front+padding_backD_{out} = D_{in} + \text{padding\_front} + \text{padding\_back}

    Hout=Hin+padding_top+padding_bottomH_{out} = H_{in} + \text{padding\_top} + \text{padding\_bottom}

    Wout=Win+padding_left+padding_rightW_{out} = W_{in} + \text{padding\_left} + \text{padding\_right}

示例

>>> m = nn.ReflectionPad3d(1)
>>> input = torch.arange(8, dtype=torch.float).reshape(1, 1, 2, 2, 2)
>>> m(input)
tensor([[[[[7., 6., 7., 6.],
           [5., 4., 5., 4.],
           [7., 6., 7., 6.],
           [5., 4., 5., 4.]],
          [[3., 2., 3., 2.],
           [1., 0., 1., 0.],
           [3., 2., 3., 2.],
           [1., 0., 1., 0.]],
          [[7., 6., 7., 6.],
           [5., 4., 5., 4.],
           [7., 6., 7., 6.],
           [5., 4., 5., 4.]],
          [[3., 2., 3., 2.],
           [1., 0., 1., 0.],
           [3., 2., 3., 2.],
           [1., 0., 1., 0.]]]]])