评价此页

torch.func.stack_module_state#

torch.func.stack_module_state(models) params, buffers[source]#

将一组 `nn.Modules` 准备好以便与 `vmap()` 一起使用。

给定一组相同的 `M` 个 `nn.Modules`,返回两个字典,它们将所有参数和缓冲区按名称堆叠在一起。堆叠的参数是可优化的(即它们是 autograd 历史记录中的新叶子节点,与原始参数无关,并且可以直接传递给优化器)。

这是一个将一组简单模型集成在一起的示例

num_models = 5
batch_size = 64
in_features, out_features = 3, 3
models = [torch.nn.Linear(in_features, out_features) for i in range(num_models)]
data = torch.randn(batch_size, 3)

def wrapper(params, buffers, data):
    return torch.func.functional_call(models[0], (params, buffers), data)

params, buffers = stack_module_state(models)
output = vmap(wrapper, (0, 0, None))(params, buffers, data)

assert output.shape == (num_models, batch_size, out_features)

当存在子模块时,将遵循 state_dict 的命名约定

import torch.nn as nn
class Foo(nn.Module):
    def __init__(self, in_features, out_features):
        super().__init__()
        hidden = 4
        self.l1 = nn.Linear(in_features, hidden)
        self.l2 = nn.Linear(hidden, out_features)

    def forward(self, x):
        return self.l2(self.l1(x))

num_models = 5
in_features, out_features = 3, 3
models = [Foo(in_features, out_features) for i in range(num_models)]
params, buffers = stack_module_state(models)
print(list(params.keys()))  # "l1.weight", "l1.bias", "l2.weight", "l2.bias"

警告

所有堆叠在一起的模块必须是相同的(除了参数/缓冲区的具体值)。例如,它们应处于相同的模式(训练模式或评估模式)。

返回类型

tuple[dict[str, Any], dict[str, Any]]