评价此页

CosineEmbeddingLoss#

class torch.nn.modules.loss.CosineEmbeddingLoss(margin=0.0, size_average=None, reduce=None, reduction='mean')[源代码]#

创建了一个标准,用于衡量输入张量 x1x_1 and x2x_2 and a Tensor label yy with values 1 or -1. Use (y=1y=1) to maximize the cosine similarity of two inputs, and (y=1y=-1) otherwise. This is typically used for learning nonlinear embeddings or semi-supervised learning.

The loss function for each sample is

loss(x,y)={1cos(x1,x2),if y=1max(0,cos(x1,x2)margin),if y=1\text{loss}(x, y) = \begin{cases} 1 - \cos(x_1, x_2), & \text{if } y = 1 \\ \max(0, \cos(x_1, x_2) - \text{margin}), & \text{if } y = -1 \end{cases}
参数
  • margin (float, optional) – Should be a number from 1-1 to 11, 00 to 0.50.5 is suggested. If margin is missing, the default value is 00.

  • size_average (bool, optional) – 已弃用 (参见 reduction)。默认情况下,损失值在批次中的每个损失元素上取平均值。请注意,对于某些损失,每个样本有多个元素。如果字段 size_average 设置为 False,则损失值在每个小批次中而是求和。当 reduceFalse 时忽略。默认值:True

  • reduce (bool, optional) – 已弃用 (参见 reduction)。默认情况下,损失值在每个小批次中根据 size_average 对观测值进行平均或求和。当 reduceFalse 时,返回每个批次元素的损失值,并忽略 size_average。默认值:True

  • reduction (str, optional) – Specifies the reduction to apply to the output: 'none' | 'mean' | 'sum'. 'none': no reduction will be applied, 'mean': the sum of the output will be divided by the number of elements in the output, 'sum': the output will be summed. Note: size_average and reduce are in the process of being deprecated, and in the meantime, specifying either of those two args will override reduction. Default: 'mean'

形状
  • Input1: (N,D)(N, D) or (D)(D), where N is the batch size and D is the embedding dimension.

  • Input2: (N,D)(N, D) or (D)(D), same shape as Input1.

  • Target: (N)(N) or ()().

  • Output: If reduction is 'none', then (N)(N), otherwise scalar.

示例

>>> loss = nn.CosineEmbeddingLoss()
>>> input1 = torch.randn(3, 5, requires_grad=True)
>>> input2 = torch.randn(3, 5, requires_grad=True)
>>> target = torch.ones(3)
>>> output = loss(input1, input2, target)
>>> output.backward()
forward(input1, input2, target)[源代码]#

执行前向传播。

返回类型

张量